Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1983-1988    https://doi.org/10.11896/cldb.18050077
  无机非金属及其复合材料 |
微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果
钱春香1,2, 冯建航1, 苏依林1,2
1 东南大学材料科学与工程学院,南京 211189
2 东南大学绿色建材技术研究所,南京 211189
Microbially Induced Calcium Carbonate Precipitation Improves the Early-ageMechanical Performance and Self-healing Effect of Cement-based Materials
QIAN Chunxiang1,2, FENG Jianhang1, SU Yilin1,2
1 College of Materials Science and Engineering, Southeast University, Nanjing 211189
2 Research Institute of Green Construction Materials, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 5045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸钙沉淀技术在土木工程材料领域应用日益广泛,近期研究表明该技术在自修复水泥基材料中具有广阔的应用前景。本实验采用一种能够矿化生产碳酸钙的固碳菌,将其与底物配制成自修复剂在水泥基成型阶段直接加入到基体中,对掺入后14 d内水泥基材料的力学性能和孔结构的发展进行探究。实验结果显示14 d后掺有微生物的水泥基材料的抗压、抗折强度均提高,孔结构更细化,通过DTA-TG和扫描电子显微镜发现水泥基材料表面及内部生成了方解石型碳酸钙晶体。此外,在标准养护7 d后制作宽度为0.1~0.2 mm的裂缝,模拟矿化环境探究修复效果。结果显示14 d后掺有微生物的试样即可实现接近100%的修复率,采用扫描电子显微镜和能谱仪检测发现裂缝内产生文石和方解石型的碳酸钙晶体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱春香
冯建航
苏依林
关键词:  微生物  碳酸钙  自修复材料  裂缝  力学性能    
Abstract: Microbially induced calcium carbonate precipitation is a promising technology used in materials in civil engineering, recent researches have showed its broad application prospects in self-healing cement-based materials. One type of carbon-fixing bacteria which can catalyze mine-ralization reaction was adopted. Bacterial solution with nutrients and calcium sources was incorporated into cement-based materials before cas-ting. The results revealed that compressive strength and flexural strength of mortars with bacteria were improved after 14 d and the pore structure was denser, calcite was also found in the surface and inner of mortars by using DTA-TG and SEM. Besides, cracks with 0.1—0.2 mm width were made after 7 d standard curing and mineralization environment was imitated to investigate its healing effect. The results showed that cracks in mortars with bacterial solution were nearly completely repaired after 14 d. By using SEM and EDS, calcite and aragonite crystals were found in the cracks.
Key words:  microbiology    calcium carbonate    self-healing materials    cracks    mechanical performance
                    发布日期:  2019-05-31
ZTFLH:  Q939.99  
基金资助: 国家自然科学基金(51738003);江苏省大学生创新体验项目(201710286070X)
通讯作者:  cxqian@seu.edu.cn   
作者简介:  钱春香,国务院政府特殊津贴专家、江苏特聘教授、东南大学特聘教授、东南大学绿色建材研究所所长。1992年南京化工学院博士毕业(师从唐明述院士),之后进入东南大学工作,主要从事高性能混凝土与微生物智能混凝土;微生物水泥与其他低碳胶凝材料和绿色节能建筑材料的研究。在国内外核心刊物和重要国际会议发表论文200余篇,授权发明专利30多项。
引用本文:    
钱春香, 冯建航, 苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报, 2019, 33(12): 1983-1988.
QIAN Chunxiang, FENG Jianhang, SU Yilin. Microbially Induced Calcium Carbonate Precipitation Improves the Early-ageMechanical Performance and Self-healing Effect of Cement-based Materials. Materials Reports, 2019, 33(12): 1983-1988.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050077  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1983
1 Huang H, Ye G,Damidot D. Cement and Concrete Research, 2013, 52, 71.
2 Wang R, Qian C. Journal of the Chinese Ceramic Society,2008 (4), 457(in Chinese).
王瑞兴,钱春香.硅酸盐学报, 2008(4), 457.
3 Qian C, Chen H, Ren L, et al. Frontiers in Microbiology, 2015, 6, 1.
4 Wang J, Brecht V, Sam V, et al. Journal of Cleaner Production, 2017. 156, 355.
5 Ghosh P, et al. Cement and Concrete Research, 2005, 35, 1980.
6 De Muynck W, Debrouwer D, De B, et al. Cement and Concrete Research, 2008, 38(7), 1005.
7 Van Tittelboom K, De Belie N, De Muynck W, et al. Cement and Concrete Research, 2010, 40(1), 157.
8 Xu J,Yao W. Cement and Concrete Research, 2014, 64, 1.
9 Li W, Chen W, Zhou P, et al. Chemical Engineering Journal, 2013, 218, 65.
10Li W, Chen W, Zhou P, et al. Colloids and Surfaces B: Biointerfaces, 2013, 102, 281.
11Li W, Liu L, Zhou P, et al. Current Science, 2011, 4(100), 502.
12Ghosh S, Biswaset M, Chattopadhyay B, et al. Cement and Concrete Composites, 2009, 2(31), 93.
13Shen W,Zhou M. Journal of Building Materials,2007,10(5), 566 (in Chinese).
沈卫国,周明凯. 建筑材料学报, 2007,10(5),566.
14Fatma N, et al. HBRC Journal, 2013(9), 36.
15Nicos S, Martys S,Chiara F. Cement and Concrete Research, 1997, 27(5), 747.
16Skubiszewska-Zięba J, Charmas B,Waniak-Nowicka H.Adsorption Science & Technology, 2017,35(7-8), 668.
17Yokozeki K, Watanabe K, Sakata N, et al. Applied Clay Science, 2004,26, 293.
18Yang Q, Analysis on microstructure and primary exploring of contact hardening mechanism of C-S-H superfine powder made with hydrothermal synthesis. Master‘s Thesis, Chongqing University, China, 2008(in Chinese).
杨巧.水热合成C-S-H超细粉体微观结构分析及接触硬化机理初探.硕士学位论文,重庆大学, 2008.
19Young J, Berger R, Breese J.Journal of American Ceramic Society, 1974,57(9), 394.
20Xu Q. The research on spatial and frequency distribution of the pore structure of cement-based materials. Master’s Thesis, Southeast University, China, 2014(in Chinese).
徐琼.水泥基材料孔结构空间分布与频率分布研究. 硕士学位论文, 东南大学, 2014.
21Konhauser K. Earth Science Reviews, 1998,43(3), 91.
22Zhong S, Li J, Han D, et al. Journal of Building Materials,2012 (6), 735(in Chinese).
钟世云, 李晋梅, 韩冬冬,等.建筑材料学报, 2012(6),735.
23Rong H, Qian C, Li L. Journal of the Chinese Ceramic Society, 2012(11), 1564(in Chinese).
荣辉, 钱春香,李龙志.硅酸盐学报, 2012(11), 1564.
[1] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed