Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1989-1994    https://doi.org/10.11896/cldb.18030014
  无机非金属及其复合材料 |
基于氮气吸附法的钙基地聚合物孔隙结构分形特征
马骁1,2, 谢雪鹏2, 叶雄伟3, 何巨鹏2, 朱杰2
1 广东石油化工学院建筑工程学院,茂名 525000
2 桂林电子科技大学建筑与交通工程学院,桂林 541004
3 泰豪科技股份有限公司,南昌 330046
Fractal Characteristics of Pore Structure of Calcium-based Geopolymer Based on Nitrogen Adsorption
MA Xiao1,2, XIE Xuepeng2, YE Xiongwei3, HE Jupeng2, ZHU Jie2
1 School of Architectural Engineering, Guangdong University of Petrochemical Technology, Maoming 525000
2 School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004
3 Tellhow Sci-Tech Co., Nanchang 330046
下载:  全 文 ( PDF ) ( 2614KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在氮气吸附实验的基础上,对钙基地聚合物孔隙结构进行了分形特征研究,采用FHH模型和热力学模型分别计算了分形维数并比较了两种模型计算的结果,讨论了分形维数与孔隙结构参数、氢氧化钠掺量及宏观力学性能之间的关系。研究表明:钙基地聚合物的孔隙结构呈现明显的多重分形特征,FHH模型更适合表征钙基地聚合物的孔隙分形特征,根据FHH模型计算的分形维数在2~3之间;分形维数越大,孔比表面积和总孔体积越大,平均孔径越小,孔隙结构越复杂,钙基地聚合物的抗压强度越大;分形维数与氢氧化钠掺量无明显关系;孔隙结构的复杂程度是影响钙基地聚合物力学性能的重要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马骁
谢雪鹏
叶雄伟
何巨鹏
朱杰
关键词:  钙基地聚合物  氮气吸附法  孔隙结构  分形维数    
Abstract: The study on the fractal characteristics of the pore structure of calcium-based geopolymer were carried out base on the nitrogen adsorption experiment. The fractal dimensions were calculated by FHH and thermodynamic models, and the calculation results of the two models are compared in detail. Moreover, the relationship between the fractal dimensions and the pore structure parameters, the sodium hydroxide content and the macro-mechanical properties were discussed. It could be found in the results that the calcium-based geopolymer exhibit a pore structure of obvious multi-fractal features. FHH model was found to be more capable for the characterizing the fractal features of the pore structure of calcium-based geopolymer. The fractal dimensions calculated by FHH model ranged from 2 to 3. A larger fractal dimensions resulted in a larger pore specific surface area, a lager total pore volume, a shorter average aperture and a more complex pore structure, which contribute to improve the compression strength of calcium-based geopolymer. There is no obvious correlation between the fractal dimensions and doping amount of sodium hydroxide. In conclusion, the complexity of the pore structure has proven to be the main influence factor on the mechanical properties of calcium-base geopolymer.
Key words:  calcium-based geopolymer    nitrogen adsorption method    pore structure    fractal dimension
                    发布日期:  2019-05-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51468009);桂林电子科技大学研究生教育创新计划(2017YJCX123);广东石油化工学院科研基金(2018rc15)
通讯作者:  maxiao66@souhu.com   
作者简介:  马骁,2012年10月毕业于中南大学,土木工程材料博士学位。广东石油化工学院,教授,主要研究绿色胶凝材料及高性能混凝土。
引用本文:    
马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
MA Xiao, XIE Xuepeng, YE Xiongwei, HE Jupeng, ZHU Jie. Fractal Characteristics of Pore Structure of Calcium-based Geopolymer Based on Nitrogen Adsorption. Materials Reports, 2019, 33(12): 1989-1994.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030014  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1989
1 Davidovits J. Geopolymer chemistry & application, National Defense Industry Press, China, 2011(in Chinese).
约瑟夫·戴维德维斯. 地聚合物化学及应用,国防工业出版社, 2011.
2 Das S, Yang P, Singh S S,et al. Cement and Concrete Research, 2015, 78, 252.
3 Mandelbort B B. The fractal geometry of nature, Time Books, San Francisco, 1982.
4 Pfeiffr P, Avnir D. Journal of Chemical Physics, 1983,79(7), 3558.
5 Ming Tang, Jing Qi Li. Journal of Paleontology, 2011, 415-417(2), 1545.
6 Pfeifer P, Obert M, Cole M W. Proceedings of the Royal Society A-Mathematical, Physical & Engineering Sciences, 1989, 423(1864), 169.
7 Avnir D, Jaroniec M. Langmuir, 1989, 5(6), 1412.
8 Alexander V. Neimark, Klaus K U. Journal of Colloid and Interface Science, 1993, 158(2), 412.
9 Kiselev A B. The structure and properties of porous materials,Butterworths, Academic Press, UK, 1958.
10Ma X, Ye X W, Zhu J, et al. Journal of Building Materials, 2017,20(3), 373 (in Chinese).
马骁, 叶雄伟, 朱杰, 等.建筑材料学报, 2017, 20(3), 373.
11Jaroniec M. Langmuir, 1995, 11(6), 2316.
12Sahouli B, Blacher S, Brouers F. Langmuir, 1996, 12(11), 2872.
13Elshafei G M S, Philip C A, Moussa N A. Journal of Colloid & Interface Science, 2004, 227(2), 410.
14Li Y X, Chen Y M, He X Y, et al. Journal of the Chinese Ceramic Society, 2003, 31(8), 774 (in Chinese).
李永鑫, 陈益民, 贺行洋, 等. 硅酸盐学报, 2003, 31(8), 7749.
15Zhu W Y, et al. Materials science fractal, Chemical Industry Press, China, 2004(in Chinese).
褚武杨,等. 材料科学中的分形,化学工业出版社,2004.
16Jin S S, Zhang J X, Chen C Z, et al. Journal of Building Materials, 2011, 14(1), 92 (in Chinese).
金珊珊, 张金喜, 陈春珍,等. 建筑材料学报, 2011, 14(1), 92.
[1] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[2] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[3] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[4] 杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed