Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 38-44    https://doi.org/10.11896/j.issn.1005-023X.2017.06.009
  材料研究 |
马尾藻基高比表面积活性炭的制备及表征
李诗杰, 韩奎华, 韩旭东, 路春美
山东大学能源与动力工程学院, 济南 250061
Preparation and Characterization for High Specific Surface Area
Activated Carbon from Gulfweed
LI Shijie, HAN Kuihua, HAN Xudong, LU Chunmei
School of Energy and Power Engineering, Shandong University, Jinan 250061
下载:  全 文 ( PDF ) ( 1834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600 ℃,炭化时间180 min,低温活化温度400 ℃,低温活化时间45 min,浸渍时间2 h。在16组实验条件下,制备的活性炭比表面积最大为3 122 m2/g,所有样品的孔径几乎全部分布在6 nm以内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李诗杰
韩奎华
韩旭东
路春美
关键词:  马尾藻  KOH活化法  高比表面积活性炭  孔隙结构    
Abstract: High specific surface area activated carbons were prepared by chemical activation of gulfweed with KOH as a chemical activation agent. Orthogonal experiment was adopted to discuss the influences of carbonization temperature, carbonization time, pre-activating temperature, pre-activating time and impregnation time on products′ specific surface area and pore volume, by conducting the characterizations for pore structure and surface morphology through N2 adsorption and SEM. From orthogonal experiment results, the optimum preparation conditions can be fixed as: carbonization temperature 600 ℃, carbonization time 180 min, pre-activating temperature 400 ℃, pre-activating time 45 min and impregnation time 2 h. The biggest specific surface area of the as-synthesized activated carbons in this work was 3 122 m2/g, and the pore sizes mainly concentrated within 6 nm.
Key words:  gulfweed    KOH activation method    high specific surface area activated carbon    pore structure
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51206096);山东大学基本科研业务费专项资金(2016JC005)
通讯作者:  韩奎华:男,1978年生,博士,副教授,研究方向为生物质热转化,E-mail:hankh@163.com   
作者简介:  李诗杰:男,1990年生,博士研究生,研究方向为生物质热转化,E-mail:675767978@163.com
引用本文:    
李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
LI Shijie, HAN Kuihua, HAN Xudong, LU Chunmei. Preparation and Characterization for High Specific Surface Area
Activated Carbon from Gulfweed. Materials Reports, 2017, 31(6): 38-44.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.009  或          https://www.mater-rep.com/CN/Y2017/V31/I6/38
1 Kumar A, Jena H M. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation [J]. Appl Surf Sci,2015,356:753.
2 Ji Y, Li T, Zhu L, et al. Preparation of activated carbon by microwave heating KOH activation [J]. Appl Surf Sci,2007,254(2):506.
3 Bedia J, Rosas J M, et al. Isopropanol decomposition on carbon based acid and basic catalysts [J]. Catal Today,2010,158(1-2):89.
4 Martin-Gullon I, Marco-Lozar J P, Cazorla-Amorós D, et al. Analysis of the microporosity shrinkage upon thermal post treatment of H3PO4 activated carbons [J]. Carbon,2004,42(7):1339.
5 Vernersson T, Bonelli P R, Cerrella E G, et al. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation [J]. Bioresource Technol,2002,83(2):95.
6 Yu Qiongfen, Li Ming, Ning Ping, et al. Preparation of walnut-shell activated carbon and its application in environmental protection [J]. Chem Ind Eng,2011,28(6):63(in Chinese).
余琼粉, 李明, 宁平, 等. 核桃壳活性炭的制备及其在环境保护中的应用[J].化学工业与工程,2011,28(6):63.
7 Bao Jinmei, Ling Qi, Li Rui. Adsorption mechanism of activated carbon and its application in water treatment [J]. Sichuan Environment,2011,30(1):97(in Chinese).
包金梅, 凌琪, 李瑞. 活性炭的吸附机理及其在水处理方面的应用[J].四川环境,2011,30(1):97.
8 Corcho-Corral B, Olivares-Marin M, Fernández-González C, et al. Preparation and textural characterization of activated carbon from vine shoots (Vitis vinifera) by H3PO4-chemical activation [J]. Appl Surf Sci,2006,252(17):5961.
9 Feng-Chin W, Ru-Ling T, Ruey-Shin J. Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenol from water [J]. Separation Purification Technol,2005,47(1-2):10.
10 Yorgun S, Vural N, Demiral H. Preparation high-surface area activated carbons from Paulownia wood by ZnCl2 activation [J]. Microporous Mesoporous Mater,2009,122(1-3):189.
11 Kunquan L, Zheng Z, Ye L. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step of H3PO4 activation [J]. J Hazard Mater,2010,181(1-3):440.
12 Suárez-Garciá F, Martinez-Alonso A, Tascón J M D. Pyrolysis of apple pulp: Chemical activation with phosphoric acid [J]. J Anal Appl Pyrolysis,2002,62(1):283.
13 Lua A C, Lau F Y, Guo J. Influence of pyrolysis conditions on pore development of oil-palm shell activated carbons [J]. J Anal Appl Pyrolysis,2006,76(1):96.
14 Lillo-Rodenas M A, et al. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism [J]. Carbon,2003,41(2):267.
15 Chen Jinfu, Li Xingcun, Li Shuyuan. Research on the activation mechanism of petroleum coke [J]. J Fuel Chem Technol,2004,32(1):54(in Chinese).
陈进富, 李兴存, 李术元. 石油焦活化机理的研究[J]. 燃料化学学报,2004,32(1):54.
16 Ozdemir I, Sahin M, Orhan R, et al. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation [J]. Fuel Processing Technol,2014,125(9):200.
17 Sych N V, Trofymenko S I, Poddubnaya O I, et al. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob [J]. Appl Surf Sci,2012,261(1):75.
18 Peng C, Yan X B, Wang R T, et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes [J]. Electrochim Acta,2013,87(1):401.
19 Xie Hongmei, Luo Qingming, et al. Studies on the performances of super-high specific surface area activated carbon for hydrogen storage [J]. Nat Gas Chem Ind,2011,36(6):11(in Chinese).
谢红梅, 罗清明, 等. 超高比表面积活性炭储氢性能研究[J]. 天然气化工,2011,36(6):11.
20 Ning Guoqing, Wang Gang, Gao Jinsen. Recent developments in synthesis of carbon functional materials from heavy ends of petro-leum [J].Chem Ind Eng Prog,2011,30(9):1998(in Chinese).
宁国庆, 王刚, 高金森. 石油重质组分制备碳功能材料的研究进展[J]. 化工进展,2011,30(9):1998.
21 Ji Yanfen, Wang Chengjun. Study on production technique of high surface area activated carbon using petroleum cokes [J]. J Liaoning University of Technology:Nat Sci Ed,2011,31(3):168(in Chinese).
纪艳芬, 王成军.石油焦制备高比表面积活性炭技术的研究[J]. 辽宁工业大学学报:自然科学版,2011,31(3):168.
22 Meng Guanhua, Li Aimin, Zhang Quanxing. Studies on the oxygen-containing groups of activated carbon and their effects on the adsorption character [J]. Ion Exchange Adsorption,2007,23(1):88(in Chinese).
孟冠华, 李爱民, 张全兴.活性炭的表面含氧官能团及其对吸附影响的研究进展[J].离子交换与吸附,2007,23(1):88.
23 Zhou Guilin, Jiang Yi, Xie Hongmei, et al. Effect of preparation conditions on the structure of activated carbon with super-high specific surface area [J]. Sci Technol Chem Ind,2005,13(2):7(in Chinese).
周桂林, 蒋毅, 谢红梅,等. 制备条件对超高比表面积活性炭结构的影响[J].化工科技,2005,13(2):7.
24 Benaddi H, Legras D, Rouzaud J N, et al. Influence of the atmosphere in the chemical activation of wood by phosphoric acid [J]. Carbon,1998,36(3):306.
25 刘晓敏, 邓先伦, 郭昊, 等. KOH浸渍制备活性炭及其对丁烷吸附性能研究[C]//全国活性炭学术研讨会,2012.
26 Wu M B, Li R C, He X J, et al. Microwave-assisted preparation of peanut Shell-based activated carbons and their use in electrochemical capacitors [J]. New Carbon Mater,2015,30(1):87.
27 Tongpoothorn W, Sriuttha M, Homchan P, et al. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties [J]. Chem Eng Res Des,2011,89(3):335.
28 Gomez-Serrano V, Pastor-Viilegas J, Perez-Florin A, et al. FT-IR study of rockrose and of char and activated carbon [J]. J Anal Appl Pyrolysis,1996,36(1):71.
29 El-Hendawy A A. Variation in the FT-IR spectra of a biomass under impregnation, carbonization and oxidation conditions [J]. J Anal Appl Pyrolysis,2006,75(2):159.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[3] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[4] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[5] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[6] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[7] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[8] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[9] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[10] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[11] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[12] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[13] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[14] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[15] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed