Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23090133-8    https://doi.org/10.11896/cldb.23090133
  无机非金属及其复合材料 |
硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响
董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅*
深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,深圳市低碳建筑材料与技术重点实验室,广东 深圳 518060
Influence of Aluminum Sulfate on the Performance of High-content Circulating Fluidized Bed Fly Ash-based Foam Concrete
DONG Biqin, ZHANG Xiao, LIU Yuantao, HE Xiaowei, WANG Yanshuai*
Shenzhen Key Laboratory for Low-carbon Construction Material and Technology, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 5196KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着新型循环流化床燃煤技术的发展,循环流化床粉煤灰(CFBFA)的排放量日益增加。结合我国北方地区冬季严寒时保温隔热材料需求量大的现状,采用高掺量CFBFA制备具有保温隔热性能的泡沫混凝土。针对泡沫混凝土存在的凝结时间长以及早期强度低等问题,本工作掺入硫酸铝进行改性,研究并分析了硫酸铝掺量对泡沫混凝土密度、强度和导热系数的影响。利用X射线衍射(XRD)、热重分析(TG)以及扫描电子显微镜(SEM)等研究了硫酸铝作用下CFBFA基泡沫混凝土的水化产物和微观形貌。此外,还利用3D轮廓仪分析了泡沫混凝土的孔隙结构。结果表明,硫酸铝促进了本体系早期AFt的生成,与基准组(硫酸铝掺量为0%(质量分数,下同))相比,15%硫酸铝掺量的CFBFA基泡沫混凝土的初凝时间缩短了470 min,10%硫酸铝掺量的泡沫混凝土3 d强度可达到10.43 MPa,导热系数为0.31 W·m-1·K-1。这种泡沫混凝土具有较快批量化生产的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董必钦
张枭
刘源涛
何晓伟
王琰帅
关键词:  泡沫混凝土  流化床粉煤灰(CFBFA)  隔热  无碱液体速凝剂  孔隙结构    
Abstract: With the development of the new circulating fluidized bed coal-burning technology, the emission of the circulating fluidized bed fly ash (CFBFA) is increasing. In this work, combined with the high demand of thermal insulation materials in northern China, high dosage CFBFA was used to prepare foam concrete with thermal insulation performance. To tackle the challenges of long setting time and low early strength in foam concrete, aluminum sulfate was introduced. The influence of aluminum sulfate mixture on the density, strength and thermal conductivity of foam concrete was studied. The hydration products and micromorphology of CFBFA-based foam concrete were analyzed by X-ray diffraction (XRD), thermal weight (TG) and scanning electron microscopy (SEM). Moreover, the pore structure of foamed concrete was tested by 3D contourometer. The results showed that aluminum sulfate promoted the early formation of ettringite in the system. Compared with the reference group (0% aluminum sulfate addition), the initial setting time of foam concrete with 15% aluminum sulfate addition was reduced by 470 minutes. The foam concrete with 10% aluminum sulfate addition achieved a 3-day compressive strength of 10.43 MPa and a thermal conductivity of 0.31 W·m-1·K-1, showing its potential for efficient large-scale production.
Key words:  foam concrete    circulating fluidized bed fly ash (CFBFA)    heat insulation    alkali-free liquid accelerator    pore structure
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52108228;51925805)
通讯作者:  * 王琰帅,博士,深圳大学土木与交通工程学院特聘教授、国家优秀青年基金(海外)获得者。主要从事可持续生态建筑材料研究,包括绿色建材设计、建筑材料耐久性及性能评估、固体废弃物资源化及再生应用等。yswang@szu.edu.cn   
作者简介:  董必钦,博士,深圳大学教授、博士研究生导师,广东省滨海土木工程耐久性重点实验室副主任,2019年获得国家自然科学基金杰出青年基金。已发表学术论文130余篇,获得授权专利26项。
引用本文:    
董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
DONG Biqin, ZHANG Xiao, LIU Yuantao, HE Xiaowei, WANG Yanshuai. Influence of Aluminum Sulfate on the Performance of High-content Circulating Fluidized Bed Fly Ash-based Foam Concrete. Materials Reports, 2024, 38(20): 23090133-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090133  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23090133
1 Wu Y H, Edward J, Jia L F. Fuel, 2004, 83, 1357.
2 Zhu S J, Lyu Q G, Zhu J G. Journal of the Energy Institute, 2019, 92, 1388.
3 Yan S, Liu Q W, Shao Y J, et al. Fuel, 2020, 269, 117424.
4 Chen X M, Gao J M, Yan Y, et al. Construction and Building Materials, 2017, 157, 1154.
5 Du S X, Li X J, Yuan J, et al. Environmental Protection Science, 2022, 48(1), 21 (in Chinese).
杜世勋, 李晓姣, 袁进, 等. 环境保护科学, 2022, 48(1), 21.
6 Lin H Y, Lin W, Yang Y F. Advanced Materials Research, 2012, 512, 1548.
7 Li S C, Chi J Z. Light Metals, 2022(7), 12 (in Chinese).
李世春, 池君洲. 轻金属, 2022(7), 12.
8 Zhao J H, Wang D M, Liao S C. Construction and Building Materials, 2015, 101, 851.
9 Zhang W Y, Wang S, Duan X H, et al. Construction and Building Materials, 2023, 369, 130394.
10 Nghia P T, Tuan N N, Tuan D N, et al. Journal of Cleaner Production, 2022, 375, 133939.
11 Lina Chica, Albert Alzate. Construction and Building Materials, 2019, 200, 637.
12 Chen X M, Yan Y, Liu Y Z, et al. Construction and Building Materials, 2014, 54, 137.
13 Lee Sangpil, Kim Donghyun, Ryu Jonghyun, et al. Tunnelling and Underground Space Technology, 2006, 21, 431.
14 Sathya N J, Ramamurthy K. Construction and Building Materials, 2012, 37, 144.
15 Niu M D, Li G X, Zhang J B, et al. Construction and Building Materials, 2020, 253, 119246.
16 Jiang J, Lu Z Y, Niu Y H, et al. Materials & Design, 2016, 92, 949.
17 Fan L L, Yang Y, Zhu B R, et al. New Building Materials, 2012, 39(7), 46 (in Chinese).
范丽龙, 杨杨, 朱伯荣, 等. 新型建筑材料, 2012, 39(7), 46.
18 Gabrisová A, Havlica J, Sahu S. Cement and Concrete Research, 1991, 21(6), 1023.
19 Kishar E A. Cement and Concrete Research, 2005, 35(8), 1638.
20 Zhang J S. Study on the regulation of ettringite morphology andits mechanism. Master’s Thesis, China General Research Institute of Building Materials Science, China, 2018 (in Chinese).
张金山. 钙矾石形貌调控及其机理研究. 硕士学位论文, 中国建筑材料科学研究总院, 2018.
21 Albayrak M, Yörükoğlu A, Karahan S, et al. Building and Environment, 2007, 42, 3161.
22 Xiao M, Li F X, Yang P F, et al. Journal of Building Engineering, 2023, 71, 106500.
[1] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[2] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[3] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[4] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[5] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[6] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[7] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[8] 雷东移, 刘承侃, 刘佳鑫, 丛波, 王光文, 张鹏, 李莹, 董玉玲, 李智鸿, 刘加平. 发泡水泥板的应用背景、现状及前景概述[J]. 材料导报, 2024, 38(14): 22120059-9.
[9] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[10] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[11] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[12] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[13] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[14] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[15] 刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed