Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22050324-11    https://doi.org/10.11896/cldb.22050324
  金属与金属基复合材料 |
骨组织工程镁基支架的制备研究进展
李再久1,2,*, 夏臣平1, 刘明诏2, 金青林2
1 昆明理工大学民航与航空学院,昆明 650500
2 昆明理工大学材料科学与工程学院,昆明 650093
Research Progress of Preparation of Magnesium-based Scaffolds for Bone Tissue Engineering
LI Zaijiu1,2,*, XIA Chenping1, LIU Mingzhao2, JIN Qinglin2
1 Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 34823KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨组织工程为受损骨、病变骨的治疗提供了重要的途径。如何获得易于骨修复、高强度且具有良好生物相容性的支架,是当前骨组织工程支架应用的技术难点和研究热点之一。支架材料的种类及制备方法是影响骨组织工程结构及性能的主要因素。镁基合金因在生物相容性、降解行为等方面具有突出表现而受到了普遍的关注,被认为是一种前景广阔的骨组织工程支架材料。常见的骨组织工程镁基支架制备方法有熔体发泡法、渗流铸造法、固/气共晶定向凝固法和增材制造法等,然而现有制备方法在孔隙结构精细控制及造孔残留物对镁基支架生物相容性的影响等方面仍需进一步研究。本文综述了骨组织工程镁基支架的制备方法,分析了影响镁基支架孔隙结构和性能的因素,总结了每种制备方法的优缺点,并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李再久
夏臣平
刘明诏
金青林
关键词:  骨组织工程  镁基支架  制备方法  孔隙结构    
Abstract: Bone tissue engineering provides an important approach for the treatment of damaged bone and diseased bone. Recently, the research on fabricating scaffolds with bone reconstruction, high strength, and good biocompatibility, has been one of the most popular topics and technical difficulties in the application of bone tissue engineering scaffolds. The types and preparation methods of scaffold material are major factors affecting its structure and properties. Magnesium-based alloys have attracted widespread attention because of its outstanding performance in biocompatibility and degradation behavior, and have been considered as a candidate class of promising scaffold materials for bone tissue enginee-ring. The preparation methods of magnesium-based scaffolds for bone tissue engineering include melt foaming, infiltration casting, solid/gas eutectic directional solidification and additive manufacturing, etc. However, the existing preparation methods still need to be further studied in the aspects of fine control of pore structure and the effect of pore-making residues on the biocompatibility of magnesium-based scaffolders. This article reviews the preparation methods of magnesium-based scaffolds used in bone tissue engineering, analyzes the main factors affecting pore structure and properties of scaffolds, summarizes the advantages and disadvantages of each preparation method, and discusses the trends of future research.
Key words:  bone tissue engineering    magnesium-based scaffold    preparation method    pore structure
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51864026);云南省重大专项计划(202202AG050011)
通讯作者:  *李再久,昆明理工大学民航与航空学院副教授、硕士研究生导师。2006年7月本科毕业于重庆大学材料科学与工程学院,2014年6月在昆明理工大学材料加工工程专业取得博士学位,2014年7月至2017年7月在昆明贵金属研究所工作,2017年8月至今在昆明理工大学民航与航空学院工作。目前主要从事定向凝固规则多孔材料及其应用研究工作。主持国家自然科学基金、云南省重大专项计划等科研项目。获国内外发明专利5项,发表研究论文40余篇,包括Crystal Growth & Design、Vacuum、Materials Letters、JOM、《金属学报》等。lizaijiu@126.com   
引用本文:    
李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
LI Zaijiu, XIA Chenping, LIU Mingzhao, JIN Qinglin. Research Progress of Preparation of Magnesium-based Scaffolds for Bone Tissue Engineering. Materials Reports, 2024, 38(4): 22050324-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050324  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22050324
1 Bran G M, Stern-Straeter J, Hörmann K, et al. Archives of Medical Research, 2008, 39, 467.
2 Dzobo K, Thomford N E, Senthebane D A, et al. Stem Cells International, 2018, 2018, 1.
3 Henkel J, Woodruff M A, Epari D R, et al. Bone Research, 2013, 1, 216.
4 Seitz H, Rieder W, Irsen S, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 74, 782.
5 Kamboj N, Ressler A, Hussainova I. Materials, 2021, 14, 5338.
6 No Y J, Nguyen T, Lu Z F, et al. Bone, 2021, 153, 116147.
7 Liu X H, Ma P X. Annals of Biomedical Engineering, 2004, 32, 477.
8 Guo L Q, Liang Z H, Yang L, et al. Journal of Controlled Release, 2021, 338, 571.
9 Huaye Zhuang, Yong Han, Ailing Feng. Materials Science and Enginee-ring: C, 2008, 28, 1462.
10 Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, et al. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1687.
11 Malladi L, Mahapatro A, Gomes A S. Materials Technology, 2018, 33, 173.
12 Ryan G, Pandit A, Apatsidis D P. Biomaterials, 2006, 27, 2651.
13 Alvarez K, Nakajima H. Materials, 2009, 2, 790.
14 Zheng Y F, Gu X N, Witte F. Materials Science and Engineering: R: Reports, 2014, 77, 1.
15 Cheng J, Liu B, Wu Y H, et al. Journal of Materials Science & Techno-logy, 2013, 29, 619.
16 Dayue Jiang, Fuda Ning, Ying Wang. Journal of Materials Processing Technology, 2021, 289, 116952.
17 Dargusch M S, Dehghan-Manshadi A, Shahbazi M, et al. ACS Biomaterials Science & Engineering, 2019, 5, 1686.
18 Ren H Z, Pan C, Liu Y C, et al. Materials Chemistry and Physics, 2022, 289, 126458.
19 Yao R H, Han S Y, Sun Y H, et al. Biomaterials Advances, 2022, 138, 212968.
20 Wu H Z, Xie X X, Wang J, et al. Journal of Materials Research and Technology, 2021, 13, 1779.
21 Li Y, Jahr H, Lietaert K, et al. Acta Biomaterialia, 2018, 77, 380.
22 Wang X J, Xu S Q, Zhou S W, et al. Biomaterials, 2016, 83, 127.
23 Shuai C J, Li S, Peng S P, et al. Materials Chemistry Frontiers, 2019, 3, 544.
24 Song G L. Corrosion Science, 2007, 49, 1696.
25 Kicheol Hong, Hyeji Park, Yunsung Kim, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 213.
26 Morgenthal I, Andersen O, Kostmann C, et al. Advanced Engineering Materials, 2014, 16, 309.
27 Staiger M P, Pietak A M, Huadmai J, et al. Biomaterials, 2006, 27, 1728.
28 Qin Y, Wen P, Guo H, et al. Acta Biomaterialia, 2019, 98, 3.
29 Tsuruga E, Takita H, Itoh H, et al. The Journal of Biochemistry, 1997, 121, 317.
30 Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, et al. Progress in Biomaterials, 2014, 3, 61.
31 Amini A R, Laurencin C T, Nukavarapu S P. Critical ReviewsTM in Biomedical Engineering, 2012, 40, 363.
32 Karageorgiou V, Kaplan D. Biomaterials, 2005, 26, 5474.
33 Zhang X, Li X W, Li J G, et al. Key Engineering Materials, 2013, 544, 276.
34 Zhang X, Li X W, Li J G, et al. Materials Science and Engineering: C, 2014, 42, 362.
35 Zhang X, Li X W, Li J G, et al. Progress in Natural Science: Materials International, 2013, 23, 183.
36 Jiang G F, He G. Materials Science and Engineering: C, 2014, 43, 317.
37 Wen C E, Yamada Y, Shimojima K, et al. Materials Letters, 2004, 58, 357.
38 Zhao J H, Wu H, Wang L T, et al. Biomaterials Advances, 2022, 134, 112719.
39 Garimella A, Rathi D, Jangid R, et al. Materials Today: Proceedings, 2022, 50, 2276.
40 Garimella A, Ghosh S B, Bandyopadhyay-Ghosh S, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2022, 111, 463.
41 Zhang E L, Yin D S, Xu L P, et al. Materials Science and Engineering: C, 2009, 29, 987.
42 Zhang B P, Hou Y L, Wang X D, et al. Materials Science and Enginee-ring: C, 2011, 31, 1667.
43 Zhang S X, Li J N, Song Y, et al. Materials Science and Engineering: C, 2009, 29, 1907.
44 Gu X N, Zheng Y F, Cheng Y, et al. Biomaterials, 2009, 30, 484.
45 Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Acta Biomate-rialia, 2015, 13, 16.
46 Hou R Q, Scharnagl N, Feyerabend F, et al. Corrosion Science, 2018, 132, 35.
47 Saad A P M, Jasmawati N, Harun M N, et al. Corrosion Science, 2016, 112, 495.
48 Cheng M Q, Wahafu T, Jiang G F, et al. Scientific Reports, 2016, 6, 1.
49 Bobe K, Willbold E, Haupt M, et al. Acta Biomaterialia, 2022, 148, 389.
50 Bobe K, Willbold E, Morgenthal I, et al. Acta Biomaterialia, 2013, 9, 8611.
51 Kleer N, Julmi S, Gartzke A K, et al. Materialia, 2019, 8, 100436.
52 Kleer-Reiter N, Julmi S, Feichtner F, et al. Biomedical Materials, 2021, 16, 035037.
53 Han X, Zhang J S, Xie X, et al. Development and Application of Mate-rials, 2017, 32(6), 69(in Chinese).
韩茜, 张江溯, 谢霄, 等. 材料开发与应用, 2017, 32(6), 69.
54 Luo H J, Zhang L, Xu Z G, et al. Materials Science Forum, 2013, 749, 356.
55 Yang D H, Hur B Y, Yang S R. Journal of Alloys and Compounds, 2008, 461, 221.
56 Hur B Y, Zhao R. Applied Mechanics and Materials, 2011, 121, 75.
57 Xu Z G, Fu J W, Luo T J, et al. Materials & Design, 2012, 34, 40.
58 Yang D H, Yang S R, Wang H, et al. Materials Science and Enginee-ring: A, 2010, 527, 5405.
59 Xia X C, Feng J L, Ding J, et al. Materials & Design, 2015, 74, 36.
60 Huang W Z, Luo H J, Zhang L, et al. Materials Science Forum, 2018, 933, 282.
61 Dong Q S, Li Y, Jiang H Q, et al. Journal of Magnesium and Alloys, 2021, 9, 1329.
62 Kirkland N T, Kolbeinsson I, Woodfield T, et al. International Journal of Modern Physics B, 2009, 23, 1002.
63 Staiger M P, Kolbeinsson I, Kirkland N T, et al. Materials Letters, 2010, 64, 2572.
64 San Marchi C, Mortensen A. Acta Materialia, 2001, 49, 3959.
65 Conde Y, Despois J F, Goodall R, et al. Advanced Engineering Mate-rials, 2006, 8, 795.
66 Lietaert K, Weber L, Van Humbeeck J, et al. Journal of Magnesium and Alloys, 2013, 1, 303.
67 Wang X F, Li Z D, Huang Y J, et al. Materials & Design, 2014, 64, 324.
68 Jiang G F, He G. Materials Science and Engineering: C, 2014, 43, 317.
69 Jia G Z, Hou Y, Chen C X, et al. Materials & Design, 2018, 140, 106.
70 Jia G Z, Chen C X, Zhang J, et al. Corrosion Science, 2018, 144, 301.
71 Madden L R, Mortisen D J, Sussman E M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15211.
72 Oliviero O, Ventre M, Netti P A. Acta Biomaterialia, 2012, 8, 3294.
73 Bakhsheshi-Rad H R, Dayaghi E, Ismail A F, et al. Transactions of Nonferrous Metals Society of China, 2019, 29, 984.
74 Wen C E, Mabuchi M, Yamada Y, et al. Scripta Materialia, 2001, 45, 1147.
75 apek J, Vojtěch D. Materials Science and Engineering: C, 2014, 35, 21.
76 apek J, Vojtěch D. Key Engineering Materials, 2014, 592, 342.
77 Mutlu I. Transactions of Nonferrous Metals Society of China, 2018, 28, 114.
78 Dutta S, Bavya Devi K, Roy M. Advanced Powder Technology, 2017, 28, 3204.
79 Wen C E, Yamada Y, Shimojima K, et al. Materials Letters, 2004, 58, 357.
80 Wen C E, Yamada Y, Shimojima K, et al. Materials Science Forum, 2003, 419, 1001.
81 Zhou C X, Liu Y, Zhang H W, et al. Transactions of Nonferrous Metals Society of China, 2020, 30, 1524.
82 Liu Y, Li Y X, Wan J, et al. Materials Science and Engineering: A, 2005, 402, 47.
83 Zhang H W, Li Y X, Liu Y. Acta Metallurgica Sinica, 2007, 43(6), 589(in Chinese).
张华伟, 李言祥, 刘源. 金属学报, 2007, 43(6), 589.
84 Zhou C X, Liang G Q, Liu Y, et al. Journal of Magnesium and Alloys, 2022, 10, 2137.
85 Liu M Z, Li Z J, Li F, et al. Materials Letters, 2022, 315, 131920.
86 Zhou C X, Liu Y, Zhang H W, et al. Metallurgical and Materials Tran-sactions A, 2020, 51, 3238.
87 Wang Z, Wu W W, Qian G A, et al. Engineering Fracture Mechanics, 2019, 214, 149.
88 Bhuvanesh Kumar M, Sathiya P. Thin-Walled Structures, 2021, 159, 107228.
89 Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Materials Today, 2018, 21, 22.
90 Liu G, Zhang X F, Chen X L, et al. Materials Science and Engineering: R: Reports, 2021, 145, 100596.
91 ASTM International. Standard terminology for additive manufacturing technologies, 2012, F2792-12a.
92 Wei K W, Gao M, Wang Z M, et al. Materials Science and Engineering:A, 2014, 611, 212.
93 Tan X P, Tan Y J, Chow C S L, et al. Materials Science and Enginee-ring: C, 2017, 76, 1328.
94 Sing S L, An J, Yeong W Y, et al. Journal of Orthopaedic Research, 2016, 34, 369.
95 Wang P, Gammer C, Brenne F, et al. Materials Science and Enginee-ring: A, 2018, 711, 562.
96 Liu J L, Yu H J, Chen C Z, et al. Optics and Lasers in Engineering, 2017, 93, 195.
97 Wang L Z, Wang S, Hong X F. Journal of Manufacturing Processes, 2018, 35, 492.
98 Zhang D Y, Wang W D, Guo Y W, et al. Journal of Materials Processing Technology, 2019, 268, 25.
99 Biffi C A, Fiocchi J, Tuissi A. Journal of Alloys and Compounds, 2018, 755, 100.
100 Zhou X, Liu X H, Zhang D D, et al. Journal of Materials Processing Technology, 2015, 222, 33.
101 Ng C C, Savalani M M, Lau M L, et al. Applied Surface Science, 2011, 257, 7447.
102 Wu J J, Wang L Z. Journal of Materials Research, 2018, 33, 2752.
103 Li Y, Zhou J, Pavanram P, et al. Acta Biomaterialia, 2018, 67, 378.
104 Li Y, Jahr H, Zhang X Y, et al. Additive Manufacturing, 2019, 28, 299.
105 Do A V, Khorsand B, Geary S M, et al. Advanced Healthcare Mate-rials, 2015, 4, 1742.
106 Nguyen T L, Staiger M P, Dias G J, et al. Advanced Engineering Materials, 2011, 13, 872.
107 Gangireddy S, Gwalani B, Liu K, et al. Additive Manufacturing, 2019, 26, 53.
108 Zumdick N A, Jauer L, Kersting L C, et al. Materials Characterization, 2019, 147, 384.
109 Wei K W, Wang Z M, Zeng X Y. Materials Letters, 2015, 156, 187.
110 Cao X J, Jahazi M, Immarigeon J P, et al. Journal of Materials Proces-sing Technology, 2006, 171, 188.
111 Yan C Z, Hao L, Hussein A, et al. Materials Science and Engineering: C, 2017, 75, 1515.
112 Yuan L, Ding S, Wen C. Bioactive Materials, 2019, 4, 56.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
[5] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[6] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[7] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[8] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[9] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[10] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[11] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[12] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[13] 平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
[14] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[15] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed