Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040191-11    https://doi.org/10.11896/cldb.22040191
  高分子与聚合物基复合材料 |
SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展
张星星1,2, 高相东2,*, 董余兵1,*, 段灯1,2, 李效民2
1 浙江理工大学材料科学与工程学院,杭州 310018
2 中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室,上海 200050
Progress in Preparation and Properties of SiO2 Aerogel@Polymer Composites
ZHANG Xingxing1,2, GAO Xiangdong2,*, DONG Yubing1,*, DUAN Deng1,2, LI Xiaomin2
1 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
下载:  全 文 ( PDF ) ( 33459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SiO2气凝胶@聚合物复合材料融合了SiO2气凝胶纳米多孔、低热导、耐高温特性及聚合物柔韧、高强特性,可在微观尺度形成独特的有机无机互渗透结构,既克服了SiO2气凝胶脆性大、强度低的固有缺陷,也增强了聚合物的隔热、耐高温、阻燃、疏水等功能,从而可用于需求高强、高韧、高效绝热、耐高温、阻燃、防火、超疏水等多种复合功能的应用场景,是当前气凝胶新材料领域的研究热点。本文从SiO2气凝胶@聚合物复合材料的制备方法、组成与微观结构、物理化学性能三个角度综述了当前领域最新研究进展,涵盖了环氧树脂、聚氨酯、聚酰亚胺、聚乙烯醇、聚苯乙烯等常见聚合物体系,归纳总结了“共混法”“共前驱体法”“气凝胶或聚合物原位生长法”三种典型制备途径,分别从组成与结构、力学性能、热学性能、阻燃性能、疏水性能等方面,阐述了气凝胶@聚合物复合材料的结构与性能特点,分析了制备方法及气凝胶掺量等因素对复合材料体系结构与性能的影响规律。在此基础上,梳理了SiO2气凝胶@聚合物复合材料当前研究存在的问题及未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张星星
高相东
董余兵
段灯
李效民
关键词:  SiO2气凝胶  聚合物  制备方法  物化性能    
Abstract: SiO2 aerogel@polymer composites (APC) integrate the nanoporous feature, the low thermal conductivity and the high temperature resistance of SiO2 aerogels with the high flexibility and the high strength of polymers, possessing a special organic-inorganic interpenetrating structure at the microscopic scale. Thus the APC bears dual benefits, overcoming the inherent high brittleness and low strength of SiO2 aerogel, and enhancing the heat insulation, high temperature resistance, flame retardant and hydrophobicity of the polymer. These integrated properties of APC pave the way toward applications requiring multiple functions including high strength, high toughness, high thermal insulation, high temperature resistance, flame retardancy, fire resistance, and hydrophobicity, which renders APC a hotspot in the field of new aerogel materials. This paper reviews the latest research progress in the field from three perspectives: preparation methods, composition and microstructure, and physicochemical properties of SiO2 aerogel@polymer composites, including epoxy resin, poly-urethane, polyimide, polyvinyl alcohol, polystyrene and other common polymer systems. Three typical preparation methods of ‘blending method' ‘co-precursor method' and ‘aerogel or polymer in-situ growth method' were summarized. The structure and properties of aerogel@polymer composites were described from the aspects of composition and microstructure, mechanical properties, thermal properties, flame retardant properties, hydrophobicity, etc. The influences of the preparation method and aerogels content on the structure and properties of composites were analyzed. Finally, the existing problems and possible future development of the current research were analyzed and prospected.
Key words:  SiO2 aerogel    polymer    fabrication method    physicochemical properties
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB332  
基金资助: 科技部重点研发计划(2016YFA0201103);山东泰山产业领军人才资助项目(2019TSCYCX-32)
通讯作者:  *高相东,博士,研究员,硕士研究生导师。1991至2002年在同济大学材料学院就读,获学士、硕士和博士学位,2002年受聘至中国科学院上海硅酸盐研究所、高性能陶瓷与超微结构国家重点实验室。2008年7月至2009年1月,至新西兰奥克兰大学材料与化学工程学院(高唯院士研究组)进修;2018年4月在江苏无机材料研究院兼职从事纳米孔硅基新材料研发及产业化工作。目前主要从事气凝胶新材料、新型半导体纳米结构合成及其物化性能调控等方面的研究工作。发表论文140余篇,包括Advanced Material、Nano Energy、Journal of Materials Chemistry A等,获国家发明专利授权20余项;撰写《Solar Cells Dye-sensitized Devices》等英文专著章节2次、中文专著章节1次。xdgao@mail.sic.ac.cn 董余兵,博士,浙江理工大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事形状记忆高分子复合材料、可降解高分子材料等方面研究工作。在Composites Science and Technology、ACS Applied Materials & Interfaces、Composites Part A等期刊发表SCI论文50余篇。dyb19831120@zstu.edu.cn   
作者简介:  张星星,2020年7月毕业于西安理工大学,获工学学士学位。现为浙江理工大学材料科学与工程学院与中科院上海硅酸盐研究所联培硕士研究生,导师为高相东研究员和董余兵副教授,研究方向为新型气凝胶材料可控制备及应用。
引用本文:    
张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
ZHANG Xingxing, GAO Xiangdong, DONG Yubing, DUAN Deng, LI Xiaomin. Progress in Preparation and Properties of SiO2 Aerogel@Polymer Composites. Materials Reports, 2023, 37(21): 22040191-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040191  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040191
1 Chen C W, Ding R, Yang S H, et al. LWT-Food Science and Technology, 2020, 129, 109568.
2 Bo G X, Xu X L, Tian X K, et al. Journal of Non-Crystalline Solids, 2021, 562, 120783.
3 Wu S, Du A, Xiang Y, et al. RSC Advances, 2016, 6(63), 58268.
4 Li Y C, Zhang Y, Jin R G, Acta Materiae Compositae Sinica, 2005, (2), 21 (in Chinese).
李永超, 张毅, 金日光. 复合材料学报, 2005, (2), 21.
5 Linhares T, De Amorim M T P, Duraes L. Journal of Materials Chemistry A, 2019, 7(40), 22768.
6 Kaya G G, Deveci H. Journal of Industrial and Engineering Chemistry, 2020, 89, 13.
7 Chen H B, Wang Y Z, Schiraldi D A. ACS Applied Materials & Interfaces, 2014, 6(9), 6790.
8 Salimian S, Zadhoush A, Talebi Z, et al. ACS Applied Nano Materials, 2018, 1(8), 4179.
9 Chang K J, Wang Y Z, Peng K C, et al. Journal of Polymer Research, 2014, 21, 338.
10 Kucharek M, Macrae W, Yang L. Composites Part A-Applied Science and Manufacturing, 2020, 139, 106108.
11 Motahari S, Motlagh G H, Moharramzadeh A. Journal of Macromolecular Science Part B-Physics, 2015, 54(9), 1081.
12 Halim Z A, Awang N, Yajid M M, et al. Polymer Bulletin, 2022, 79, 6173.
13 Wei P W, Yan G Q, Zhao G L. Inorganic Chemicals Industry, 2016, 48(10), 1 (in Chinese).
魏鹏湾, 闫共芹, 赵冠林. 无机盐工业, 2016, 48(10), 1.
14 Gupta N, Ricci W. Journal of Materials Processing Technology, 2008, 198(1-3), 178.
15 Salimian S, Zadhoush A, Talebi Z. Material Design & Processing Communications, 2019, 137(46), 49425.
16 Salimian S, Zadhoush A. Journal of Porous Materials, 2019, 26(6), 1755.
17 Ge D, Yang L, Li Y, et al. Journal of Non-Crystalline Solids, 2009, 355(52), 2610.
18 Cho J, Jang H G, Kim S Y, et al. Composites Science and Technology, 2019, 171, 244.
19 Kantor Z Z, Wua T T, Zeng Z H, et al. Chemical Engineering Journal, 2022, 443, 136401.
20 Li S P, Wei M, Zhang M. Guangdong Chemical Industry, 2010, 37(5), 6(in Chinese).
刘生鹏, 危淼, 张苗. 广东化工, 2010, 37(5), 6.
21 Guo X Q, Wang Y K, Zhang R. Advances in Chemical, Material and Metallurgical Engineering, 2013, 634, 1943.
22 Babiarczuk B, Lewandowski D, Szczurek A, et al. Journal of Supercritical Fluids, 2020, 166, 104997.
23 Fei Z, Yang Z, Chen G, et al. Journal of Sol-Gel Science and Technology, 2018, 85(3), 506.
24 Luo Z, Yang Z, Fei Z, et al. Journal of Polymer Research, 2020, 27(9), 1.
25 Wang Q, Yu H, Zhang Z, et al. Journal of Colloid and Interface Science, 2020, 573, 62.
26 Wang C H, Cheng H M, Hong C Q, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 81.
27 Wu X D, Shao G F, Shen X D, et al. Chemical Engineering Journal, 2017, 330, 1022.
28 Kong Y, Zhong Y, Shen X D, et al. Journal of Non-Crystalline Solids, 2012, 358, 3150.
29 Kong Y, Zhong Y, Shen X D, et al. Microporous and Mesoporous Materials, 2014, 197, 77.
30 Renjith P K, Sarathandran C, Sivanadan Achary V, et al. Journal of Hazardous Materials, 2021, 415, 125548.
31 Fidalgo A, Farinha J P S, Martinho J M G, et al. Chemistry of Materials, 2007, 19, 2603.
32 Fidalgo A, Farinha J P S, Martinho J M G, et al. Materials and Design, 2020, 189, 108521.
33 Sun G, Duan T, Liu C, et al. Polymer Testing, 2020, 91, 106738.
34 Sun H, Schiraldi D A, Chen D, et al. ACS Applied Materials & Interfaces, 2016, 8(20), 13051.
35 Wang X, Jana S C. ACS Applied Materials & Interfaces, 2013, 5(13), 6423.
36 Li H Y, Lu L, Liu H L, et al. Composites Science and Technology, 2021, 213, 108934.
37 Geng G G, Li C X, Bian G X, et al. Journal of Chang'an University(Natural Science Edition), 2011, 31(1), 102 (in Chinese).
耿刚强, 李春轩, 边功勋, 等. 长安大学学报(自然科学版), 2011, 31(1), 102.
38 Ma R J. Researching on microwave synthesis of SiO2 aerogels core/polystyrene shell composite microsoccus about technics、construction and performance. Master's Thesis, Chang'an University, China, 2010 (in Chinese).
马瑞杰. 微波合成硅气凝胶/聚苯乙烯核壳微球工艺、结构及性能研究. 硕士学位论文, 长安大学, 2010.
39 Geng G G, Guo J T, Wang H, et al. Advanced Materials Research, 2010, 168, 1780.
40 Liu X J, Zhu Y, Liu B, et al. Journal of Shaanxi University of Science & Technology(Natural Science Edition), 2014, 32(5), 57 (in Chinese).
刘新军, 朱原, 刘斌, 等. 陕西科技大学学报(自然科学版), 2014, 32(5), 57.
41 Li H W, Lv N, Lu P Y, et al. Materials Science Forum, 2014, 804, 199.
42 Khezri K, Mahdavi H. Microporous and Mesoporous Materials, 2016, 228, 132.
43 Kim J H, Ahn J H, Kim J D, et al. Materials (Basel), 2021, 14(7), 1790.
44 Dourbash A, Buratti C, Belloni E, et al. Journal of Applied Polymer Science, 2017, 134(8), 44521.
45 Nazeran N, Moghaddas J. Journal of Non-Crystalline Solids, 2017, 461, 1.
46 Park I, Peng H G, Gidley D W, et al. Chemistry of Materials, 2006, 18(3), 650.
47 Lin J, Wang X. European Polymer Journal, 2008, 44(5), 1414.
48 Li Y, Dong L B, Zhang X, et al. Materials Letters, 2015, 160, 432.
49 Naeimirad M, Zadhoush A, Neisiany R E, et al. Theoretical and Applied Fracture Mechanics, 2018, 96, 83.
50 Hasan M A, Sangashetty R, Esther A C M, et al. Journal of the Institution of Engineers (India): Series D, 2017, 98(2), 297.
51 He Y L, Xie T. Applied Thermal Engineering, 2015, 81, 28.
52 Kim G S, Hyun S H. Journal of Materials Science, 2003, 38(9), 1961.
53 Kim H M, Noh Y J, Yu J, et al. Composites Part A-Applied Science and Manufacturing, 2015, 75, 39.
54 Guo J, Nguyen B N, Li L, et al. Journal of Materials Chemistry A, 2013, 1(24), 7211.
55 Shaabani H, Davoudizadeh S, Shobeiri S A, et al. Journal of Thermal Analysis and Calorimetry, 2019, 140(2), 713.
56 Lee H, Lee D, Cho J, et al. Composites Part A: Applied Science and Manufacturing, 2019, 123, 108.
57 Zhao C, Yan Y, Hu Z, et al. Construction and Building Materials, 2015, 93, 309.
58 Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Angewandte Chemie International Edtion, 2018, 57(17),4538.
59 Singh B P, Jena B K, Bhattacharjee S, et al. Surface & Coatings Technology, 2013, 232, 475.
60 Maghsoudi K, Motahari S. Journal of Applied Polymer Science, 2018, 135(3), 45706.
61 Xia Z. Studies on synthesis and thermal insulation property of silica aerogel/polystyrene composite materials. Master's Thesis, China University of Petroleum (Huadong), China, 2014 (in Chinese).
夏政. SiO2气凝胶/聚苯乙烯复合材料的制备及其保温性能的研究. 硕士学位论文, 中国石油大学(华东), 2014.
[1] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[2] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[3] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[4] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[5] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[6] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[7] 曹金安, 王景平, 徐友龙, 邵亮, 郭思琪, 王学川. 天然可生物降解聚合物壁材在微胶囊中的应用[J]. 材料导报, 2023, 37(18): 22010221-19.
[8] 张荣, 刘卓航, 熊文伟, 林乾辉, 何学航, 李思琦, 刘清亭, 付旭东, 胡圣飞. 氮化硼/聚合物导热复合材料界面热阻调控研究进展[J]. 材料导报, 2023, 37(18): 21080118-13.
[9] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[10] 韩风雷, 刘艳, 刘涛, 张学富, 吕洋, 扎西尼玛. SiO2气凝胶对超细水泥基材料性能影响的试验研究[J]. 材料导报, 2023, 37(15): 22080137-7.
[11] 张枫烨, 张耀君, 贺攀阳, 高江雨. 新型地质聚合物基分离膜的制备与应用研究进展[J]. 材料导报, 2023, 37(14): 21090154-13.
[12] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[13] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[14] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[15] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed