Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21060160-9    https://doi.org/10.11896/cldb.21060160
  无机非金属及其复合材料 |
硅基陶瓷前驱体用于耐高温连接材料研究进展
陈楚童1,2, 罗永明1, 徐彩虹1,2
1 中国科学院化学研究所,中国科学院极端环境高分子材料重点实验室,北京 100190
2 中国科学院大学化学与化工学院,北京 100049
Research Progress of Silicon-based Ceramic Precursors for High-temperature Connection Materials
CHEN Chutong1,2, LUO Yongming1, XU Caihong1,2
1 CAS Key Laboratory of Science and Technology on High-tech Polymer Materials, Chinese Academy of Sciences Institute of Chemistry, Beijing 100190,China
2 School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049,China
下载:  全 文 ( PDF ) ( 3728KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅基陶瓷前驱体聚合物具有与一般高分子聚合物相似的加工工艺特性,并可在高温下转化为陶瓷材料,在航空航天等领域有着广泛的应用。与传统的机械连接、焊接等连接技术相比,硅基陶瓷前驱体应用于耐高温连接材料具有工艺简单、应力分布均匀、连接温度低等优势。陶瓷前驱体用于连接材料可分为两种情况:经固化及高温热解处理后再使用的连接材料称为耐高温连接剂;固化后不经热解而直接使用的连接材料称为耐高温胶粘剂。本文对包括聚碳硅烷、聚硅氮烷和聚硅氧烷在内的硅基陶瓷前驱体用作耐高温连接剂和耐高温胶粘剂的研究进展分别进行了概括总结,并对其优缺点进行了分析,最后指出了硅基陶瓷前驱体用于耐高温连接材料研究仍存在的问题和今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈楚童
罗永明
徐彩虹
关键词:  耐高温  胶粘剂  连接剂  陶瓷前驱体  硅基聚合物    
Abstract: Silicon-based ceramic precursors have similar processing characteristics to common polymers and can be transformed into ceramic materials at high temperature, which have a broad application in aerospace and other fields. Compared with traditional mechanical connection, such as welding and other connection technologies, the use of silicon-based ceramic precursors as jointing materials has advantages of simple process, uniform stress distribution, and low connection temperature. Ceramic precursors as jointing material can be categorized as either high temperature resistant joint agents or adhesives. The former undergoes curing and high temperature heat treatment before use, while the latter is directly used after curation. This paper summarizes the research progress of silicon-based ceramic precursors including polycarbosilane, polysilazane and polysiloxane as high temperature resistant joint agents or adhesives, and analyzes their advantages and shortcomings. We also suggest the unsolved issues and future research direction in the field of silicon-based ceramic precursors for high-temperature connection materials.
Key words:  high-temperature resistance    adhesive    joint agent    ceramic precursor    silicon-based polymer
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TQ174.75  
基金资助: 山东省重大科技创新工程(2019JZZY010316);山东省自然科学基金氟硅材料联合基金(ZR2020LFG012)
通讯作者:  罗永明,通信作者,中国科学院化学研究所副研究员。1995年本科毕业于北京科技大学,1998年在北京科技大学取得硕士学位。2001年在清华大学取得博士学位。主要从事陶瓷前驱体的应用工艺与材料性能的研究。
徐彩虹,通信作者,中国科学院化学研究所研究员、博士研究生导师。1990年7月本科毕业于长春地质学院,1997年7月在山东大学高分子化学与物理专业取得硕士学位,2001年7月在中国科学院化学研究所高分子化学与物理专业取得博士学位。2001—2002年在日本京都大学化学研究所进行博士后研究。2005年入选中科院“百人计划”。主要从事含硅聚合物新材料的设计、合成及应用研究。   
作者简介:  陈楚童,2019年毕业于北京化工大学,获得工学学士学位。现为中国科学院化学研究所硕士研究生,在徐彩虹研究员的指导下进行研究。目前主要研究方向为有机硅高分子。
引用本文:    
陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
CHEN Chutong, LUO Yongming, XU Caihong. Research Progress of Silicon-based Ceramic Precursors for High-temperature Connection Materials. Materials Reports, 2023, 37(11): 21060160-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060160  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21060160
1 Yoon D H, Reimanis I E. Journal of the Korean Ceramic Society, 2020,57, 246.
2 Ionescu E, Bernard S, Lucas R, et al. Advanced Engineering Materials, 2019,21, 1900269.
3 Colombo P, Mera G, Riedel R, et al. Journal of the American Ceramic Society, 2010,93, 1805.
4 Zhou X B, Li Y B, Li Y F, et al. International Journal of Applied Cera-mic Technology, 2018,15, 1157.
5 Grasso S, Tatarko P, Rizzo S, et al. Journal of the European Ceramic Society, 2014,34, 1681.
6 Chen Z, Hu S, Song X, et al. International Journal of Applied Ceramic Technology, 2020,17, 2591.
7 Kim Y H, Jang S H, Kim Y W. International Journal of Applied Ceramic Technology, 2019,16, 1295.
8 Wang L G, Li Y F, You S H, et al. International Journal of Adhesion and Adhesives, 2018,87, 73.
9 Wang X Z, Wang J, Wang H. International Journal of Adhesion and Adhesives, 2013,45, 1.
10 Verbeek W.U.S. Patent, US3853567, 1974.
11 Yajima S, Hayashi J, Omori M, et al. Nature, 1976,261, 683.
12 Wang M C, Dong X, Tao X, et al. Journal of the European Ceramic So-ciety, 2015,35, 4083.
13 Feng B, Hu S J, Chen C, et al. Advanced Ceramics, 2016, 37(6), 377 (in Chinese).
封波, 胡淑娟, 陈超, 等. 现代技术陶瓷, 2016, 37(6), 377.
14 Hernández-Rodríguez P, López-Honorato E. Ceramic International, 2017,43, 11289.
15 Wang X Z, Wang J, Wang H. Ceramics International, 2013,39, 1365.
16 Liu H L, Li S J, Chen Z J. Materials Science Forum, 2005,475-479, 1267.
17 Peng Z J, Si W J, Lin S W, et al. Journal of Inorganic Materials, 2001, 16(5), 779 (in Chinese).
彭志坚, 司文捷, 林仕伟, 等. 无机材料学报, 2001, 16(5), 779.
18 Chu Z Y, Feng C X, Song Y C, et al. Journal of Inorganic Materials, 2002, 17(2), 193 (in Chinese).
楚增勇, 冯春祥, 宋永才, 等. 无机材料学报, 2002, 17(2), 193.
19 Yajima S, Shishido T, Okamura K. American Ceramic Society Bulletin, 1977,56, 1060.
20 Pippel E, Woltersdorf J, Colombo P, et al. Journal of the European Ceramic Society, 1997,17, 1259.
21 Lewis J A, Cima M J, Rhine W E. Journal of the American Ceramic So-ciety, 1994,77, 1839.
22 Wang X Z, Wang J, Wang H. Ceramics International, 2015,41, 7283.
23 Wang X Z, Wang J, Wang H. Materials Science & Engineering A, 2013,576, 1.
24 Wang X Z, Wang J, Wang H. Journal of the European Ceramic Society, 2012,32, 3415.
25 Wang X Z, Wang J, Wang H. International Journal of Adhesion and Adhesives, 2012,35, 17.
26 Lei Y P, Wang Y D, Song Y C, et al. Ceramics International, 2011,37, 3005.
27 Wang J, Guo Q, Liu L, et al. International Journal of Adhesion and Adhesives, 2005,25, 495.
28 Wang J, Jiang N, Jiang H. International Journal of Adhesion and Adhesives, 2005,26, 532.
29 Jeong D H, Septiadi A, Fitriani P, et al. Ceramics International, 2018,44, 10443.
30 Lewinsohn C A, Jones R H, Colombo P, et al. Journal of Nuclear Mate-rials, 2002,307, 1232.
31 Khalifa H E, Koyanagi T, Jacobsen G M, et al. Journal of Nuclear Materials, 2017,487, 91.
32 Lewinsohn C A, Colombo P, Reimanis I, et al. Journal of the American Ceramic Society, 2001,84, 2240.
33 Suo J, Chen Z H, Zheng W W, et al. Transactions of Nonferrous Metals Society of China, 2005,15, 1322.
34 Zheng J, Beckman S P, Gray J N, et al. Journal of the American Ceramic Society, 2001,84, 1961.
35 Zheng J, Akinc M. Green Journal of the American Ceramic Society, 2010,84, 2479.
36 Greil P. Journal of the American Ceramic Society, 2010,78, 835.
37 Wu H B, Ding X J, Yu J H, et al. Fiber Composites, 2006, 23(2), 56 (in Chinese).
吴宏博, 丁新静, 于敬晖, 等. 纤维复合材料, 2006, 23(2), 56.
38 Wang Y L. Study on synthesis and analysis of polysiloxane. Master's Thesis, Zhejiang University, China, 2008 (in Chinese).
王彦琳. 聚硅氧烷的合成与分析研究. 硕士学位论文, 浙江大学, 2008.
39 Si Q F, Fan X D. Polymer Bulletin, 2004(1), 21 (in Chinese).
佀庆法, 范晓东. 高分子通报, 2004(1), 21.
40 Yuan X K, Chen S, Zhang X H, et al. Ceramics International, 2009,35, 3241.
41 Yuan X K, Xu B. Chinese Journal of Aeronautics, 2007,20, 81.
42 Wang C, Wang J, Park C B, et al. Journal of Materials Science, 2004,39, 4913.
43 Yuan X K, Li S J, Zhang T. Acta Aeronautica Et Astronautica Sinica, 2007,28, 451.
44 Colombo P, Riccardi B, Donato A, et al. Journal of Nuclear Materials, 2000,278, 127.
45 Colombo P, Sglavo V, Pippel E, et al. Journal of Materials Science, 1998,33, 2405.
46 Unal O, Anderson I E, Maghsoodi S I. Journal of the American Ceramic Society, 1997,80, 1281.
47 Qin Y, Rao Z L, Huang Z X, et al. International Journal of Adhesion and Adhesives, 2014,55, 132.
48 Li S J, Liu W H, Lu Y K, et al. Acta Materiae Compositae Sinica, 2008, 25(6), 78 (in Chinese).
李树杰, 刘文慧, 卢越焜, 等. 复合材料学报, 2008, 25(6), 78.
49 Zhang J S, Luo R Y, Jiang M, et al. Materials Science & Engineering A, 2011,528, 2952.
50 Tang B, Wang M C, Liu R M, et al. Journal of the European Ceramic Society, 2018,38, 67.
51 Xie S T, Wang M C, Gong Z, et al. Journal of Alloys and Compounds, 2019,774, 46.
52 Liu H L, Li S J, Chen Z J. Rare Matal Materials and Engineering, 2006, 35(1), 134 (in Chinese).
刘洪丽, 李树杰, 陈志军. 稀有金属材料与工程, 2006, 35(1), 134.
53 Liu H L, Li S J, Zhang T, et al. Rare Metal Materials and Engineering, 2005,34, 1469.
54 Liu H L, Li S J, Li X G. Rare Metal Materials and Engineering, 2005,34, 1905.
55 Luan X G, Chang S, Riedel R, et al. Ceramics International, 2018,44, 19505.
56 Luan X G, Chang S, Yu R, et al. Ceramics International, 2019,45, 9515.
57 Luan X G, Wang J Q, Zou Y, et al. Materials Science & Engineering A, 2016,651, 517.
58 Luan X G, Chang S, Riedel R, et al. Ceramics International, 2018,44, 8476.
59 Yu Z, Zhou C, Li R, et al. Ceramics International, 2012,38, 4635.
60 Jung K Y, Park S B, Ihm S K. Applied Catalysis B Environmental, 2004,51, 239.
61 Holcombe C E, Dykes N L. Journal of Materials Science, 1991,26, 3730.
62 Li S Q, Luo Y M, Wang L H, et al. International Journal of Applied Ceramic Technology, 2017,14, 999.
63 Haddadi S A, Mahdavian-Ahadi M, Abbasi F. Industrial & Engineering Chemistry Research, 2014,53, 11747.
64 Luo Y M, Luo Z F, Zeng F, et al. Silicone Material, 2016, 30(2), 102 (in Chinese).
罗永明, 罗钟凤, 曾凡, 等. 有机硅材料, 2016, 30(2), 102.
65 Appiah K A, Wang Z L, Lackey W J. Thin Solid Films, 2000,371, 114.
66 Qiao Y L, Xue Y C, Liu J, et al. Materials Reports, 2016, 30(11), 6 (in Chinese).
乔玉林, 薛胤昌, 刘军, 等. 材料导报, 2016, 30(11), 6.
67 Morrissey S R. Chemical & Engineering News, 2005,83, 26.
68 Zhong Z X, Xu H F, Zhang X F, et al. Ceramics International, 2017,44, 3810.
69 Wang M C, Tao X, Xu X Q, et al. Journal of Alloys & Compounds, 2016,663, 82.
70 Wang M C, Hu X X, Xu X Q, et al. Materials & Design, 2015,86, 709.
71 Qin Y, Rao Z L, Huang Z X. Journal of Aeronautical Materials, 2014, 34(2), 63 (in Chinese).
秦岩, 饶志龙, 黄志雄. 航空材料学报, 2014, 34(2), 63.
72 Wang X Z, Wang J, Wang H. The Journal of Adhesion, 2017, 95, 85.
73 Wang L H. Study on preparation and performance of high temperature resistant adhesive based on polycarbosilane. Master's Thesis, Hebei University of Technology, China, 2017 (in Chinese).
王林豪. 基于聚碳硅烷耐高温胶粘剂的制备及其性能研究. 硕士学位论文, 河北工业大学, 2017.
74 Liu W. Synthesis of a new type of polysiloxane and its use in high-tempe-rature adhesives. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences, China, 2013 (in Chinese).
刘伟. 新型聚硅氧烷的合成及其用于耐高温胶粘剂的研究. 博士学位论文, 中国科学院研究生院, 2013.
75 Liu W, Luo Y M, Xu C H. High Performance Polymers, 2013,25, 543.
[1] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[2] 张怀志, 金鑫, 黎享, 赵天颂. 聚氨酯/环氧树脂基混合料型耐久长效道路交通标线材料组合优化研究[J]. 材料导报, 2023, 37(12): 21120002-13.
[3] 孙文, 闫秋艳, 苏超, 栾世方, 殷敬华. 高分子医用组织胶粘剂的应用与研究进展[J]. 材料导报, 2022, 36(3): 21090149-17.
[4] 张勇, 高相东, 姚佳祺, 吴永庆, 赵祥. SiO2-Al2O3气凝胶及纤维增强复合材料制备技术研究进展[J]. 材料导报, 2022, 36(23): 21030207-9.
[5] 赵立伟, 杨海冬, 王德志, 曲春艳, 冯浩, 李洪峰, 肖万宝. 双马来酰亚胺树脂增韧改性研究进展[J]. 材料导报, 2022, 36(20): 21020082-7.
[6] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[7] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[8] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[9] 李恩重, 郭伟玲, 刘军, 于鹤龙, 徐滨士. 先驱体转化陶瓷涂层的裂解方法研究进展[J]. 材料导报, 2021, 35(21): 21151-21158.
[10] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[11] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[12] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[13] 游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
[14] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
[15] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed