Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2185-2190    https://doi.org/10.11896/cldb.19100124
  高分子与聚合物基复合材料 |
复合树脂/空心微珠耐高温浮力材料的制备及性能
曹成昊1, 郭安然1, 刘家臣1, 张军军2
1 天津大学材料科学与工程学院,天津 300072;
2 天津大学青岛海洋工程研究院,青岛 266000
Preparation and Properties of Composite Resin/Hollow Microspheres High Temperature Buoyancy Materials
CAO Chenghao1, GUO Anran1, LIU Jiachen1, ZHANG Junjun2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
2 Institute of Oceanographic Engineering, Tianjin University (Qingdao), Qingdao 266000, China
下载:  全 文 ( PDF ) ( 5418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对环氧树脂基固体浮力材料热稳定性差的问题,提出选用耐温性能优良的酚醛树脂和甲基硅树脂与环氧树脂形成耐高温复合基体,从而提高整体浮力材料的耐温特性。通过密度测试和准静态单轴压缩实验,研究了不同温度下树脂含量对固体浮力材料压缩强度、体积密度、弹性模量、比强度的影响,并测试了浮力材料的吸水性能和耐高温性能。研究结果表明:酚醛树脂的加入可以提升浮力材料的耐高温性能。环氧树脂中环氧基通过开环反应与硅树脂中硅氧烷发生共聚反应,形成复合树脂基体,从而增强基体的耐高温性能。硅树脂含量为40%的试样性能最好,200 ℃热处理后压缩强度、体积密度、弹性模量、比强度分别为39 MPa、0.652 g/cm3、4.02 GPa、59.82 MPa/(g/cm3)。300 ℃热处理后浮力材料抗压强度仍能维持在30 MPa以上。不同温度热处理后浮力材料的吸水率不超过0.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹成昊
郭安然
刘家臣
张军军
关键词:  固体浮力材料  耐高温  耐海水  硅树脂    
Abstract: In order to solve the problem of poor thermal stability of epoxy resin-based solid buoyancy materials, this work proposed to use phenolic resin and methyl silicone resin with excellent temperature resistance to form high temperature resistant composite matrix with epoxy resin to improve the temperature resistance of the whole buoyant material. Density test and quasi-static uniaxial compression experiments were carried out to study the effects of resin content at different temperatures on compressive strength, bulk density, elastic modulus and specific strength of solid buoyancy materials, and the water absorption properties and high temperature resistance of buoyant materials were tested. The results show that the addition of phenolic resin can improve the high temperature resistance of buoyant materials. The epoxy group in the epoxy resin undergoes a ring-opening reaction to copolymerize with the siloxane in the silicone resin to form a composite resin matrix, thereby enhancing the high temperature resistance of the matrix. The sample with 40% silicone resin has the best performance. The compressive strength, bulk density, elastic modulus and specific strength after heat treatment at 200 ℃ are 39 MPa, 0.652 g/cm3, 4.02 GPa, 59.82 MPa/(g/cm3), respectively. After 300 ℃ heat treatment, the compressive strength of buoyant materials can still be maintained above 30 MPa. The water absorption of the buoyant material after heat treatment at different temperatures does not exceed 0.5%.
Key words:  solid buoyant material    high temperature resistance    seawater resistant    silicone resin
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB332  
基金资助: 青岛市海洋工程装备与技术智库联合项目(201909163004)
通讯作者:  jcliutju@tju.edu.cn   
作者简介:  曹成昊,2017年6月毕业于安徽理工大学,获得工学学士学位。现为天津大学材料科学与工程学院硕士研究生,在刘家臣教授和郭安然副教授的指导下进行研究。目前主要研究领域为深海浮力材料。
刘家臣,天津大学教授,博士研究生导师。其团队主要研究方向包括:结构陶瓷及其应用,材料连接与高温隔热密封材料,深海浮力材料。近年来负责完成科研项目40多项。
引用本文:    
曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
CAO Chenghao, GUO Anran, LIU Jiachen, ZHANG Junjun. Preparation and Properties of Composite Resin/Hollow Microspheres High Temperature Buoyancy Materials. Materials Reports, 2021, 35(2): 2185-2190.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100124  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2185
1 Gupta N, Nagorny R. Journal of Applied Polymer Science, 2006, 102(2), 1254.
2 Wang L, Zhang J, Yang X, et al. Materials & Design, 2014, 55, 929.
3 Nikhil G, Ye R, Porfiri M. Composites Part B: Engineering, 2010, 41(3), 236.
4 Nikhil G, Ruslan N. Journal of Applied Polymer Science, 2006, 102(2), 1254.
5 Wang Qifeng, Du Zhuwei, Chen Xian, et al. Fine Chemicals, 2005, 22(3), 174(in Chinese).
王啟峰, 杜竹玮, 陈先, 等. 精细化工, 2005, 22(3), 174.
6 Chen Erfan, Zhang Yin, Ma Chi, et al. Engineering Plastics Application, 2013, 41(2), 25(in Chinese).
陈尔凡, 张莹, 马驰,等. 工程塑料应用, 2013, 41(2), 25.
7 Wu Changbin, Liu Shaojun, Dai Yu, et al. Ocean Bulletin, 2008, 27(6), 101(in Chinese).
邬长斌, 刘少军, 戴瑜, 等. 海洋通报, 2008, 27(6), 101.
8 Shao Junliu, Jian Huahu, Rui Qiangzhang, et al. Chinese Journal of Mechanical Engineering, 2016, 29(5), 10.
9 Tao Chunhui, Li Huaiming, Huang Wei, et al. Science Bulletin, 2011, 56(Z2), 2413(in Chinese).
陶春辉, 李怀明, 黄威, 等. 科学通报, 2011, 56(Z2), 2413.
10 Wang L, Zhang J, Yang X, et al. Materials & Design, 2014, 55, 929.
11 Doddamani M, Shunmugasamy V C, Gupta N, et al. Polymer Compo-sites, 2015, 36(4), 685.
12 Zhang J, Luo R. Materials Science & Engineering A, 2011, 528 (6), 2952.
13 Tang Bo, Wang Mingchao, Liu Ruiming, et al. Journal of the European Ceramic Society, 2018, 38(1), 67.
14 Liang Xiaojie, Chen Xian, Liang Zhongxu, et al. New Chemical Mate-rials, 2015, 45(10), 191(in Chinese).
梁小杰, 陈先, 梁忠旭, 等. 化工新型材料, 2015, 45(10), 191.
15 Gupta N, Woldesenbet E. Composite Structures, 2003, 61(4), 311.
16 Sadler R L, Sharpe M, Panduranga R, et al. Composite Structures, 2009, 90(3), 330.
[1] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[2] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[3] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
[4] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed