Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 137-144    https://doi.org/10.11896/j.issn.1005-023X.2017.04.029
  计算模拟 |
熔融聚合耐高温聚酰胺的等温结晶动力学研究*
王忠强1,2, 胡国胜1, 张静婷1, 徐久升2, 邵正杰3
1 中北大学高分子与生物工程研究所, 太原 030051;
2 广东中塑新材料有限公司, 东莞 523860;
3 华南师范大学物理与电信工程学院, 广州 510006
Isothermal Crystallization Kinetics of High-temperature Resistant Polyamides
Prepared by Melt Polymerization
WANG Zhongqiang1,2, HU Guosheng1, ZHANG Jingting1, XU Jiusheng2, SHAO Zhengjie3
1 Institute of Macromolecules and Bioengineering,North University of China, Taiyuan 030051;
2 Guangdong Sinoplast Advanced Material Co. Ltd., Dongguan 523860;
3 School of Physics and Telecommunication Engineering,South China Normal University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过差示扫描量热仪(DSC)研究了熔融聚合耐高温聚酰胺10T以及10T/11树脂的等温结晶行为。通过Avrami方程分析了PA10T和PA10T/11的等温结晶动力学,其Avrami指数n值介于1.79~2.31之间,表明了PA10T和PA10T/11晶体以一维针状生长和二维片状生长并存,然后计算了相关的结晶动力学参数。通过Arrhenius方程计算了PA10T和PA10T/11的等温结晶活化能,同时通过Hoffman-Weeks外推法得到了PA10T和PA10T/11的平衡熔点。并且,利用Turnbull-Fisher方程和Lauritzen-Hoffman方程研究了PA10T和PA10T/11的结晶生长方式。偏光显微镜和X射线衍射分析表明,在实验条件下PA10T和PA10T/11以一维针状生长和二维片状生长并存,并且加入11-氨基十一酸后PA10T/11的晶粒尺寸显著细化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王忠强
胡国胜
张静婷
徐久升
邵正杰
关键词:  熔融聚合  耐高温聚酰胺  氨基十一酸  结晶动力学  等温结晶    
Abstract: Poly(decamethylene terephthalamide) (PA10T) and decamethylene terephthalamide-aminoundecanoic copolyamide (PA10T/11) were prepared by melt polymerization. The isothermal crystallization behaviors of PA10T and PA10T/11 were studied by means of differential scanning calorimetry (DSC). The crystallization kinetics under isothermal conditions was analyzed by Avrami equation. It showed that the Avrami equation was applicable for isothermal crystallization very well, and the calculated Avrami index n was from 1.79 to 2.31, which demonstrated that the crystallization of PA10T and PA10T/11 were growing with one or two-dimensional growth crystals in this situation. And then the related kinetics parameters of isothermal crystallization were calculated by Avrami equation. The activation energies for isothermal crystallization of PA10T and PA10T/11 were calculated by Arrhenius equation. The equilibrium melting temperatures of PA10T and PA10T/11 were obtained from Hoffman-Weeks extrapolation. Moreover, the crystal growth mode for PA10T and PA10T/11 was studied by means of Turnbull-Fisher equation and Lauritzen-Hoffman equation. The results of polarized optical microscopy (POM) and X-ray diffraction (XRD) showed that the isothermal crystallization for PA10T and PA10T/11 were one or two-dimensional growth under the experimental conditions. And the spherulite size of PA10T/11 was reduced significantly by the addition of 11-aminoundecanoic acid compared with PA10T.
Key words:  melt polymerization    high-temperature resistant polyamide    aminoundecanoic acid    crystallization kinetics    isothermal crystallization
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TQ323.6  
基金资助: *国家科技支撑计划项目(2013BAE02B01);广东省产学研结合项目(2013B090500003);广东省特派员工作站项目(2014A090906002)
通讯作者:  胡国胜:通讯作者,男,1959年生,博士,教授,博士研究生导师,研究方向为高分子合成与共混改性 E-mail:huguosheng@nuc.edu.cn   
作者简介:  王忠强:男,1985年生,博士研究生,研究方向为高分子合成与共混改性 E-mail:jaw1985@sina.com
引用本文:    
王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.029  或          http://www.mater-rep.com/CN/Y2017/V31/I4/137
1 Chen J, Beake B D, et al. Investigation of the nanomechanical pro-perties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures[J]. J Experimental Nanosci,2016,11(9):695.
2 Zhang G, Zhou Y X, Kong Y, et al. Semiaromatic polyamides containing ether and different numbers of methylene (2-10) units: Synthesis and properties[J]. RSC Adv,2014,4(108):63006.
3 Zhang C H, Huang X B, Zeng X B, et al. Fluidity improvement of semiaromatic polyamides: Modification with oligomers[J]. J Appl Polym Sci,2014,131(7):5621.
4 Wang W Z, Huang A M, Liu A X, et al. Synthesis and characte-rization of long chain semiaromatic polyamides based on undecanediamine[J]. J Wuhan University of Technology:Mater Sci Ed,2012,27(4):689.
5 Novitsky T F, Mathias L J. One-pot synthesis of polyamide 12,T-polyamide-6 block copolymers[J]. J Polym Sci Part A:Polym Chem,2011,49(10):2271.
6 Wang W Z, et al. Environment-friendly synthesis of long chain se-miaromatic polyamides[J]. Exp Polym Lett,2009,3(8):470.
7 Neugebauer F, Ploshikhin V, Ambrosy J, et al. Isothermal and non-isothermal crystallization kinetics of polyamide 12 used in laser sintering[J]. J Therm Anal Calorim,2016,124(2):925.
8 Shashidhara G M, Pradeepa K G. Isothermal crystallization of polya-mide 6/liquid natural rubber blends at high under cooling[J]. Thermochim Acta,2014,578(4):1.
9 Rwei S P, et al. The crystallization kinetics of nylon 6/6T and nylon 66/6T copolymers[J]. Thermochim Acta,2013,555(5):37.
10 Zhang X K, Xie T X, Yang G S. Isothermal crystallization and mel-ting behaviors of nylon 11/nylon 66 alloys by in situ polymerization[J]. Polymer,2006,47(6):2116.
11 Hu G S, Ding Z Y, Li Y C, et al. Crystalline morphology and mel-ting behavior of nylon11/ethylene-vinyl alcohol/dicumyl peroxide blends[J]. J Polym Res,2009,16(3):263.
12 Layachi A, Frihi D, Satha H, et al. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites[J]. J Therm Anal Calorim,2016(2):1.
13 He M, Zong S Q, Zhou Y H, et al. Non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends[J]. Chin J Chem Eng,2015,23(8):1403.
14 Guo Y X, et al. Isothermal crystallization kinetics and melting behavior of poe-g-mah compatibilized PA11/POE blends[J]. J Wuhan University of Technology:Mater Sci Ed,2012,27(4):702.
15 Cai J, Liu M, Wang L, et al. Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites[J]. Carbohydr Polym,2011,86(2):941.
16 Ge C H, Ding P, Shi L Y, et al. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites[J]. J Polym Sci Part B:Polym Phys,2009,47(7):655.
17 Run M T, Song H Z, Wang S J, et al. Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites[J]. Polym Compos,2009,30(1):87.
18 Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44(8):2537.
19 Schwaab M, Pinto J C. Optimum reference temperature for repara-meterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant[J]. Chem Eng Sci,2007,62(10):2750.
20 Márquez Y, Franco L, Turon P, et al. Isothermal and non-isothermal crystallization kinetics of a polyglycolide copolymer having a tricomponent middle soft segment[J]. Thermochim Acta,2014,585(2):71.
21 Liu T X, Mo Z S, Wang S E, et al. Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK)[J]. Eur Polym J,1997,33(9):1405.
22 Biber E, Gündüz G, Mavis B, et al. Compatibility analysis of Nylon 6 and poly(ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics[J]. Mater Chem Phys,2010,122(1):93.
23 Hoffman J D, Miller R L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment[J]. Polymer,1997,38(13):3151.
24 Lin C C. The rate of crystallization of poly(ethylene terephthalate) by differential scanning calorimetry[J]. Polym Eng Sci,1983,23(3):113.
25 Zhu G, et al. The effects of alkali dehydroabietate on the crystallization process of polypropylene[J]. Eur Polym J,2001,37(5):1007.
26 Liu H X, Huang Y Y, Yuan L, et al. Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites[J]. Carbohydr Polym,2010,79(3):513.
27 Xiong X, Gong F H, Shi H H, et al. Isothermal crystallization kinetics of LLDPE/SEBS-g-MAH blends[J]. CIESC J,2010,61(1):249(in Chinese).
熊煦, 龚方红, 施海华, 等. LLDPE/SEBS-g-MAH体系的等温结晶动力学[J]. 化工学报,2010,61(1):249.
[1] 李绍龙, 徐艺, 陈农田, 杨文锋. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018, 32(16): 2882-2888.
[2] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[3] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed