Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2882-2888    https://doi.org/10.11896/j.issn.1005-023X.2018.16.033
  高分子与聚合物基复合材料 |
利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学
李绍龙, 徐艺, 陈农田, 杨文锋
中国民用航空飞行学院航空工程学院,广汉 618307
Nonisothermal Crystallization Kinetics of Biodegradable Poly(butylene succinate)- b-Poly(diethylene glycol succinate) Multiblock Copolymers by the Avrami and the Mo’s Methods Exclusively
LI Shaolong, XU Yi, CHEN Nongtian, YANG Wenfeng
Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan 618307
下载:  全 文 ( PDF ) ( 4070KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高聚物的成型加工通常在非等温条件下进行。本工作研究了解聚合物的非等温结晶行为,对选择合适的加工方法、设备,设定合适的温度以及时间对制备综合性能优异的高分子产品具有十分重要的意义。利用Avrami和莫志深方法对可生物降解的聚丁二酸丁二醇酯-聚丁二酸二甘醇酯 (PBS-b-PDGS) 多嵌段共聚物的非等温结晶动力学进行了详细研究。结果表明,Avrami和莫志深方法适用于该体系的非等温结晶行为,PDGS的引入没有改变共聚物的结晶机理。聚合物的结晶温度随降温速率增大而降低,相同降温速率下共聚物的结晶温度随PDGS含量增加而减小,PDGS的稀释作用是导致聚合物结晶速率减小的原因。PBS-b-PDGS共聚物的非等温结晶动力学研究为其实际加工成型提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李绍龙
徐艺
陈农田
杨文锋
关键词:  聚丁二酸丁二醇酯-聚丁二酸二甘醇酯  非等温结晶动力学  Avrami方程  莫志深方法    
Abstract: The polymer processing is usually operated under nonisothermal conditions, the study on nonisothermal crystallization behaviors of polymers have very importantly practical meaning for choosing suitable processing method, equipment, temperature and time to prepare polymer materials with excellent comprehensive or desired properties. We investigated the isothermal crystallization kinetics of biodegradable poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers by the Avrami and the Mo’s method. The results showed that Avrami and the Mo’s methods can be used to describe the nonisothermal crystallization behaviors of the four samples. The crystallization mechanism almost kept unchanged while the crystallization rate decreased with an increase of PDGS content. The results also demonstrated that the decrease of crystallization rates was attributed to the dilute effect of PDGS with an increase of PDGS content in PBS-b-PDGS copolyesters. The study on the nonisothermal crystallization kinetics of PBS-b-PDGS provide theory basis for the actual processing molding.
Key words:  poly(butylene succinate)-b-poly(diethylene glycol succinate)    nonisothermal crystallization kinetics    Avrami equation    Mo’s method
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TQ323.4  
  O631  
基金资助: 国家自然科学基金重点项目(U1233202);中国民用航空飞行学院科研基金青年基金(Q2018-65);中国民用航空飞行学院科研基金面上项目(BJ2016-02)
作者简介:  李绍龙:男,1988年生,博士,讲师,主要从事高性能航空材料的研究 E-mail:zlishaolong@163.com
引用本文:    
李绍龙, 徐艺, 陈农田, 杨文锋. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018, 32(16): 2882-2888.
LI Shaolong, XU Yi, CHEN Nongtian, YANG Wenfeng. Nonisothermal Crystallization Kinetics of Biodegradable Poly(butylene succinate)- b-Poly(diethylene glycol succinate) Multiblock Copolymers by the Avrami and the Mo’s Methods Exclusively. Materials Reports, 2018, 32(16): 2882-2888.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.033  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2882
1 Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction [J]. Polymer Degradation and Stability,1998,59(1):209.
2 Bikiaris D N, Papageorgiou G Z, Achilias D S. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s [J]. Polymer Degradation and Stability,2006,91(1):31.
3 Bechthold I, Bretz K, Kabasci S, et al. Succinic acid: A new platform chemical for biobased polymers from renewable resources [J]. Chemical Engineering & Technology,2008,31(5):647.
4 Xu J, Guo B H. Poly(butylene succinate) and its copolymers: Research, development and industrialization [J]. Biotechnology Journal,2010,5(11):1149.
5 Tachibana Y, Masuda T, Funabashi M, et al. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio [J]. Biomacromolecules,2010,11(10):2760.
6 Willke T, Vorlop K D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry [J]. Applied Microbiology and Biotechnology,2004,66(2):131.
7 Kim D Y, Kim H W, Chung M G, et al. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates [J]. Journal of Microbiology,2007,45(2):87.
8 Mondrinos M J, Dembzynski R, Lu L, et al. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering [J]. Biomaterials,2006,27(25):4399.
9 He Y S, Zeng J B, Li S L, et al. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends [J]. Thermochimica Acta,2012,529(1):80.
10 Qiu Z, Ikehara T, Nishi T. Poly(hydroxybutyrate)/poly(butylene succinate) blends: Miscibility and nonisothermal crystallization [J]. Polymer,2003,44(8):2503.
11 Li Y D, Zeng J B, Wang X L, et al. Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility [J]. Biomacromolecules,2008,9(11):3157.
12 Gan Z, Abe H, Doi Y. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol, ethy-lene succinate) copolyester [J]. Biomacromolecules,2001,2(1):313.
13 Yan J G, Wang X D, Yao M. Molecular dynamics study on the glass transition behavior of PBS [J]. Materials Review,2012,26(S2):180(in Chinese).
燕靖国,王旭东,姚曼.聚丁二酸丁二醇酯玻璃化转变行为的分子模拟[J].材料导报,2012,26(专辑20):180.
14 Tserki V, Matzinos P, Pavlidou E, et al. Biodegradable aliphatic polyesters. Part Ⅰ. Properties and biodegradation of poly(butylene succinate-co-butylene adipate) [J]. Polymer Degradation and Stability,2006,91(2):367.
15 Cao A, Okamura T, Nakayama K, et al. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethy-lene glycol succinate)s [J]. Polymer Degradation and Stability,2002,78(1):107.
16 Zheng L, Li C, Huang W, et al. Synthesis of high-impact biodegradable multiblock copolymers comprising of poly(butylene succinate) and poly(1,2-propylene succinate) with hexamethylene diisocyanate as chain extender [J]. Polymers for Advanced Technologies,2011,22:279.17 Li S L, Wu F, Yang Y, et al. Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers [J]. Polymers for Advanced Technologies,2015,26(8):1003.
18 Zheng L, Li C, Wang Z, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε-caprolactone): Synthesis, characterization, and properties [J]. Industrial & Engineering Chemistry Research,2012,51(21):1.
19 Fang W, Huang C L, Zeng J B, et al. Synthesis and characterization of segmented poly(butylene succinate) urethane ionenes containing secondary amine cation [J]. Polymer,2014,55(16):435.
20 Qiu Z, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state [J]. Polymer,2003,138(12):237.
21 De Juana R, Jauregui A, Calahorra E, et al. Non-isothermal crystallization of poly(hydroxy ether of bisphenol-A)/poly(ε-caprolactone), PH/PCL blends [J]. Polymer,1996,37(15):3339.
22 Cebe P. Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite [J]. Polymer Composites,1988,9(4):271.
23 Lonkar S P, Morlat-Therias S, Caperaa N, et al. Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites [J]. Polymer,2009,50(6):1505.
24 Zhang Z Y, Cao Z L. Kinetics of non-isothermal crystallization [J]. Chinese Journal of Polymer Science,1990,21(2):583.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed