Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2876-2881    https://doi.org/10.11896/j.issn.1005-023X.2018.16.032
  高分子与聚合物基复合材料 |
自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能
鲁云华1, 郝继璨1, 李琳2, 宋晶2, 肖国勇1, 胡知之1, 王同华2
1 辽宁科技大学化学工程学院,鞍山 114051;
2 大连理工大学化工学院,大连116024
Preparation and Gas Separation Properties of Polymers of Intrinsic Microporosity PIM-1 Based Thermally Induced Rigid Membranes
LU Yunhua1, HAO Jican1, LI Lin2, SONG Jing2, XIAO Guoyong1, HU Zhizhi1, WANG Tonghua2
1 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051;
2 School of Chemical Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 3716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以邻苯二酚和丙酮为原料,合成出四羟基化合物5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满,再与四氟对苯二腈发生聚合反应得到自具微孔聚合物PIM-1。然后,分别在300 ℃、350 ℃和400 ℃对PIM-1膜材料进行热处理得到热致刚性膜材料。利用核磁共振仪(NMR)、凝胶渗透色谱仪(GPC)、红外光谱仪(FTIR)、热重分析仪(TGA)、示差扫描量热仪(DSC)、X射线衍射仪(XRD)和扫描电镜(SEM)对所合成的四羟基化合物、PIM-1聚合物及热致刚性膜材料的结构和性能进行表征,并对其气体分离性能进行了测试。研究表明,所合成PIM-1的玻璃化转变温度为340 ℃,热分解温度为503 ℃。适当的热处理可提高PIM-1基热致刚性膜材料的气体分离性能,PIM-1-300对H2、O2、N2、CO2和CH4的渗透通量分别达到2 865 Barrer、1 071 Barrer、298 Barrer、7 070 Barrer和495 Barrer。但随热处理温度升高,热交联程度增加,膜材料的气体渗透性逐渐降低,但选择性有所提高。PIM-1-400的CO2/CH4分离系数为18.51。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁云华
郝继璨
李琳
宋晶
肖国勇
胡知之
王同华
关键词:  自具微孔聚合物  气体分离  热致刚性膜  渗透性    
Abstract: Firstly,5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane was synthesized from catechol and acetone as the raw materials. Then, the intrinsically microporous polymer PIM-1 was prepared from a dioxane-forming reaction between the home-made 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane and 2,3,5,6-tetrafluoroterephthalonitrile. The PIM-1 polymer membranes were thermally treated at 300 ℃,350 ℃ and 400 ℃ for 1 h under the N2 atmosphere, respectively. The structures and properties of the tetrahydroxyl compound, PIM-1 polymer and the PIM-1 based thermally induced rigid membranes were characterized by nuclear magnetic resource (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM), and the gas separation properties of these membranes were also measured with five kinds of pure gases, including H2, O2, N2, CO2 and CH4. These experimental results showed that the obtained PIM-1 exhibited good thermal properties with the glass transition temperature (Tg) of 340 ℃ and the thermal decomposition temperature (Td) of 503 ℃. The gas permeabilities of the resultant PIM-1 based thermally induced rigid membranes were further improved by controlling the processing temperature. After the thermal treatment at 300 ℃, the permeabilities of H2, O2, N2, CO2 and CH4 of the thermally induced rigid membranes were 2 865 Barrer,1 071 Barrer,298 Barrer,7 070 Barrer and 495 Barrer, separately. Furthermore, with the temperature increasing, the permeabilities of these gas separation membranes were decreased, but the selectivity was improved. For the PIM-1-400 membrane, the selectivity of CO2/CH4 was 18.51.
Key words:  intrinsically microporous polymer    gas separation    thermally induced rigid membrane    permeability
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TQ028  
基金资助: 国家自然科学基金(21406102;21436009;21506020;21676044);辽宁省教育厅优秀人才项目(LJQ2015053)
作者简介:  鲁云华:女,1977年生,博士,副教授,主要研究方向为功能高分子膜材料 E-mail:lee.lyh@163.com; 王同华:男,1957年生,博士,教授,主要研究方向为功能性炭膜材料的开发及应用 E-mail:wangth@dlut.edu.cn
引用本文:    
鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 胡知之, 王同华. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881.
LU Yunhua, HAO Jican, LI Lin, SONG Jing, XIAO Guoyong, HU Zhizhi, WANG Tonghua. Preparation and Gas Separation Properties of Polymers of Intrinsic Microporosity PIM-1 Based Thermally Induced Rigid Membranes. Materials Reports, 2018, 32(16): 2876-2881.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.032  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2876
1 Zhang B, Wang T H, Hu L H, et al. Advance in polyimide-based carbon membranes for gas separation[J].Membrane Science and Technology,2007,27(5):97(in Chinese).
张兵,王同华,呼立红,等.聚酰亚胺基气体分离炭膜的进展[J].膜科学与技术,2007,27(5):97.
2 Chen X, Wang Y, Jiang L. Research progress of preparation me-thods of CO2-favored permeation membranes[J]. Chemical Journal of Chinese Universities,2013,34(2):249(in Chinese).
陈曦,王耀,江雷.CO2选择性透过膜材料的制备[J].高等学校化学学报,2013,34(2):249.
3 Wu X M, Zhang Q G, Zhu A M, et al. Advances in structure controls and modifications of PIMs membranes for gas separation[J]. Progress in Chemistry,2014,26(7):1214(in Chinese).
吴新妹,张秋根,朱爱梅,等.自具微孔高分子气体分离膜的结构调控与改性研究[J].化学进展,2014,26(7):1214.
4 Xu S J, Liang L Y, Li B Y, et al. Research progress on microporous organic polymers[J]. Progress in Chemistry,2011,23(10):2085(in Chinese).
徐叔军,梁丽芸,李步怡,等.有机微孔聚合物研究进展[J].化学进展,2011,23(10):2085.
5 Budd P M, Mckeown N B, Fritsch D. Polymers of intrinsic microporosity (PIMs): High free volume polymers for membrane applications[J]. Macromolecular Symposia,2006,245(1):403.
6 Carta M,Malpass-Evans R,Croad M,et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science,2013,339(6117):303.
7 Chen Y R, Chen L H, Chang K S, et al. Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations[J]. Journal of Membrane Science,2016,514:114.
8 Fritsch D, Bengtson G, Carta M, et al. Synthesis and gas per-meation properties of spirobischromane-based polymers of intrinsic microporosity[J]. Macromolecular Chemistry & Physics,2011,212(11):1137.
9 Budd P M, McKeown N B, Ghanem B S, et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1[J]. Journal of Membrane Science,2008,325(2):851.
10 Thomas S, Pinnau I, Du N, et al. Pure-and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)[J]. Journal of Membrane Science,2009,333(1-2):125.
11 Budd P M, Elabas E S, Ghanem B S,et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporo-sity[J]. Advanced Materials,2004,16(16):456.
12 Du N Y, Robertson G P, Pinnau I, et al. Copolymers of intrinsic microporosity based on 2,2',3,3'-Tetrahydroxy-1,1'-dinaphthyl[J]. Macromolecular Rapid Communications,2009,30(8):584.
13 Zhao H Y, Xie Q, Ding X L, et al. High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation[J]. Journal of Membrane Science,2016,514:305.
14 McDonald T O, Akhtar R, Lau C H, et al. Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties[J]. Journal of Materials Chemistry A,2015,3(9):4855.
15 Budd P M, Elabas E S, Ghanem B S, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials,2004,16(16):456.
16 Li F Y, Chung T S. Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production[J]. International Journal of Hydrogen Energy,2013,38(23):9786.
17 Yong W F, Chung T. Mechanically strong and flexible hydrolyzed polymers of intrinsic microporosity (PIM-1) membranes[J]. Journal of Polymer Science Part B: Polymer Physics,2017,55:344.
18 Bushell A F, Attfield M P, Mason C R, et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8[J]. Journal of Membrane Science,2013,427(1):48.
19 Ahn J, Chung W J, Pinnau I, et al. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science,2010,346(2):280
20 Gonciaruk A, Althumayri K, Harrison W J,et al. PIM-1/graphene composite: A combined experimental and molecular simulation study[J]. Microporous & Mesoporous Materials,2015,209:126.
21 Khan M M,Filiz V,Bengtson G,et al. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity[J]. Journal of Membrane Science,2013,436:109.
22 Yong W F, Li F Y, Xiao Y C, et al. Molecular engineering of PIM-1/matrimid blend membranes for gas separation[J]. Journal of Membrane Science,2012,407-408:47.
23 Li F Y, Xiao Y, Chung T S, et al. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development[J]. Macromolecules,2012,45(3):1427.
24 Lu Y H, Hao J C, Li L, et al. Synthesis and gas separation properties of thermally induced rigid membranes[J]. Acta Polymerica Sinica,2016(8):1145(in Chinese).
鲁云华,郝继璨,李琳,等.热致刚性膜材料的合成与气体分离性能研究[J].高分子学报,2016(8):1145.
25 Bjork J A, Brostrom M L, Whitcomb D R. Molecular and supramolecular structure of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane, tetrahydrofuran solvate[J]. Journal of Chemical Crystallography,1997,27(4):223.
26 Robeson L M. The upper bound revisited[J]. Journal of Membrane Science,2008,320:390.
[1] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed