Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 115-119
  材料综述 |
莫宗云1,2, 高小建1
1 哈尔滨工业大学土木工程学院,哈尔滨 150001;
2 北华航天工业学院建筑工程系,廊坊 065000;
Research Progress on the Durability of Metakaolin Concrete
MO zongyun1,2, GAO xiaojian1
1 College of Civil Engineering, Harbin Institute of Technology, Harbin 150001;
2 Department of Building Engineering, North China Institute of Aerospace Engineering, Langfang 065000;
下载:  全 文 ( PDF ) ( 1268KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 偏高岭土(MK)是高岭土在500~800 ℃下煅烧脱羟基生成的一种无定型相活性材料。将MK按一定比例替代混凝土中的水泥可以改善混凝土的力学和耐久性能,并且由于水泥用量减少,这对于降低水泥生产过程中二氧化碳排放量以及节约能源有很大帮助,能够产生良好的经济和环境效益。重点综述了偏高岭土改性混凝土(MKC)在干燥收缩、吸水性和水渗透性、氯离子渗透性、抗硫酸盐侵蚀以及碳化5个方面的耐久性研究进展,最后对MKC耐久性研究的不足进行了探讨。
E-mail Alert
关键词:  偏高岭土  混凝土  干燥收缩  吸水性和水渗透性  氯离子渗透性  抗硫酸盐侵蚀  碳化    
Abstract: Metakaolin is an amorphous pozzolanic material formed by heating kaolin at about 500 ℃ to 800 ℃ which causes kao-linite dehydration. Substituting metakaolin for a certain amount of cement in the production of concrete can enhance the strength and durability of concrete, and moreover, reduce carbon emission and energy consumption due to decreased cement usage. This paper summarizes the research progress of metakaolin concrete′s (MKC) durability from the perspectives of drying shrinkage, sorptivity and water permeability, chloride penetration, sulfate resistance, carbonization, also discusses the inadequacies of the current research in MKC′s durability.
Key words:  metakaolin    concrete    drying shrinkage    sorptivity and water permeability    chloride penetration    sulfate resis-tance    carbonization
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TU528.0  
基金资助: *国家科技支撑计划课题(2013BAJ12B03);廊坊市科技局基金项目(2016011071);北华航天工业学院基金项目(KY-2016-03)
作者简介:  莫宗云:男,1984年生,博士研究生,讲师,主要从事新型胶凝材料研究 高小建:通讯作者,男,1976年生,博士,教授,主要从事混凝土早期性能研究
莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
MO zongyun, GAO xiaojian. Research Progress on the Durability of Metakaolin Concrete. Materials Reports, 2017, 31(15): 115-119.
链接本文:  或
1 Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as Pozzolans for concrete: A review[J]. Cem Concr Compos,2001,23(6):441.
2 Malhotra V M, Metha P K. High performance, high volume fly ash concrete[C]∥2nd ed. Ottawa (ONT): Supplementary Cementing Materials for Sustainable Development.2005.
3 Badogiannis E, et al. Exploitation of poor Greek kaolins: Strength development of metakaolin concrete and evaluation by means of k-value[J]. Cem Concr Res,2004,34:1035.
4 Mermerdas K, et al. Strength development of concretes incorporated with metakaolin and different types of calcined kaolins[J]. Constr Build Mater,2012,37:766.
5 Luo Jingwang, Lu Duyou, Xu Tao, et al. Effect of metakaolin on drying shrinkage behaviour of Portland cement pastes and its mechanism[J]. J Chin Ceram Soc,2011,39(10):1687(in Chinese).
罗旌旺,卢都友,许涛,等.MK对硅酸盐水泥浆体干燥收缩行为的影响及机理[J]. 硅酸盐学报,2011,39(10):1687.
6 Zeng Junjie, et al. Comparative research on effect of metakaolin and silica fume on mortar drying shrinkage[J]. J Wuhan University of Technology,2014,36(6):115(in Chinese).
7 Pavlik V, Uzakova M. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars[J]. Constr Build Mater,2016,102:14.
8 Philippe J P Gleize, Martin Cyr, Gilles Escadeillas. Effects of metakaolin on autogenous shrinkage of cement pastes[J]. Cem Concr Compos,2007,29: 80.
9 Lam L, Wong Y L, Poon C S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J]. Cem Concr Res,2000,30(5):747.
10 Assem A A Hassan, Mohamed Lachemi, Khandaker M A Hossain. Effect of metakaolin and silica fume on the durability of self-consolidating concrete[J]. Cem Concr Compos,2012,34:801.
11 Erhan Guneyisi, Mehmet Gesoglu, Kasim Mermerdas. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Mater Struct,2008,41:937.
12 Steve Wilben Maquarie Supit, Faiz Uddin Ahmed Shaikh. Durability properties of high volume fly ash concrete containing nano-silica[J]. Mater Struct,2015,48:2431.
13 Ramezanianpour A A, Mahmoud Motahari Karein S, Vosoughi P. Effects of calcined perlite powder as as SCM on the strength and permeability of concrete[J]. Constr Build Mater,2014,66:222.
14 Dinakar P, Pradosh K Sahoo, Sriram G. Effect of metakaolin content on the properties of high strength concrete[J]. Int J Concr Struct Mater,2013,7(3):215.
15 Ramezanianpour A A, Bahrami Jovein H. Influence of metakaolin as supplementary cementing material on strength and durability of concretes[J]. Constr Build Mater,2012,30:470.
16 Siddique R, Kaur A. Effect of metakaolin on the near surface characteristics of concrete[J]. Mater Struct,2011,44(1):77.
17 Shekarchi M, et al. Transport properties in metakaolin blended concrete[J]. Constr Build Mater,2010,24:2217.
18 Goncalves J P, Tavares L M, Toledo Filho R D. Performance evalua-tion of cement mortars modified with metakaolin or ground brick[J]. Constr Build Mater,2009,23:1971.
19 Badogiannis E, Tsivilis S. Exploitation of poor greek kaolins: Durability of metakaolin concrete[J]. Cem Concr Compos,2009,31:128.
20 Hong-Sam Kim, Sang-Ho Lee, Han-Young Moon. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Constr Build Mater,2007,21:1229.
21 Zeng Junjie, Wang Shengnian, Fan Zhihong, et al. Improvement effect and mechanism of metakaolin on marine concrete chloride pene-tration resistance[J]. J Wuhan University of Technology,2015,37(4):22(in Chinese).
曾俊杰,王胜年,范志宏,等. MK改善海工混凝土抗氯离子侵蚀性的效果及机理[J].武汉理工大学学报,2015,37(4):22.
22 Luc Courard, Anne Darimont, et al. Durability of mortars modified with metakaolin[J]. Cem Concr Res,2003,33:1473.
23 Mehmet Gesoglu, Erhan Guneyisi, Turan Qzturan, et al. Permeability properties of concrete with high reactivity metakaolin and calcined impure kaolin[J]. Mater Struct,2014,47:709.
24 Ferreira R M, Castro-Gomes J P, Costa P. Effect of metakaolin on the chloride ingress properties of concrete[J]. KSCE J Civil Eng,2016,20(4):1375.
25 Thomas M D A, Hooton R D, Scott A, et al. The effect of supplementary cementious materials on chloride binding in hardened cement paste[J]. Cem Concr Res,2012,42:1.
26 Erhan Guneyisi, Kasim Mermerdas. Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin[J]. Mater Struct,2007,40:1161.
27 Nabil M Al-Akhras. Durability of metakaolin concrete to sulfate attack[J]. Cem Concr Res,2006,36:1727.
28 Ali Mardani-Aghabag, Gozde inan Sezer, Kambiz Ramyar. Comparision of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point[J]. Constr Build Mater,2014,70:17.
29 Tosun K. The effects of different types of cements on delayed ettringite formation[D].Izimir: Dokuz Eylul University,2007:381.
30 Lee S T, et al. Effect of solution concentrations and replacement le-vels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions[J]. Cem Concr Res,2005,35:1314.
31 Goncalves J P, Toledo R D, Fairbairn E M R. Evaluation of magnesium sulphate attack in mortar-metakaolins system by thermal analysis[J]. J Therm Anal Calorim,2008,94(2):511.
32 Moon H Y, Lee S T, Kim S S. Sulphate resistance of silica fume blended mortars exposed to various sulphate solutions[J]. Canadian J Civil Eng,2003,30(4):625.
33 Papadakis V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cem Concr Res,2000,30:291.
34 Morandeau A, Thiéry M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cem Concr Res,2015,67:226.
35 Leemann A, Nygaard P, Kaufmann J, et al. Relation between carbonation resistance, mix design and exposure of mortar and concrete[J]. Cem Concr Compos,2015,62:33.
36 Ana Maria, Ruby Mejia, Maria Joao. Corrosion performance of blended concretes exposed to different aggressive environments[J]. Constr Build Mater,2016,121:704.
37 Moises Frias, Sara Goni. Accelerated carbonation effect on beha-viour of ternary Portland cements[J]. Composites Part B,2013,48:122.
38 Shi Zhenguo, et al. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars[J]. Cem Concr Res,2016,88:60.
39 Ahmed Tafraoui, Gilles Escadeillas, Thierry Vidal. Durability of ultra high performance concrete containg metakaolin[J]. Constr Build Mater,2016,112:980.
40 Qiao Chunyu, Ni Wen, Wang Changlong. Properties and microstructure of metakaolin(MK)-cement hardened slurry with high use level of MK[J]. J Build Mater,2015,18(3):393(in Chinese).
41 Abid Nadeem, Shazim Ali, Tommy Yiu Lo. Mechanical perfor-mance, durability, qualitative and quantitative analysis of microstructure of fly ash and metakaolin mortar at elevated temperatures[J]. Constr Build Mater,2013,38:338.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[3] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[4] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[5] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[6] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[7] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[8] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[9] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[10] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[11] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[12] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[13] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Full text