Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 120-125    https://doi.org/10.11896/j.issn.1005-023X.2017.015.018
  新材料新技术 |
外尔半金属TaAs单晶的研究进展*
李雨萌, 田甜, 徐家跃
上海应用技术大学材料科学与工程学院,晶体生长研究所,上海 201418;
Research Progress on TaAs Single Crystal:The Weyl Semimetal
LI Yumeng, TIAN Tian, XU Jiayue
Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418;
下载:  全 文 ( PDF ) ( 1671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 外尔半金属是当两个自旋非简并能带在三维动量空间通过费米能级附近时,其低能准粒子激发具有外尔费米子的所有特征的一类材料体系。外尔费米子是狄拉克方程的无质量解,可以看作是在三维空间一对重叠在一起且具有相反手性的粒子。TaAs单晶作为一种非磁性的外尔半金属,在其中能够观测到外尔费米子,并产生许多奇异的物理现象,如费米弧、负磁阻效应、量子反常霍尔效应等,使其在发展新型电子器件和拓扑量子计算等领域有着重要应用潜力。介绍了外尔半金属的相关基础理论和重要实验,重点探讨了TaAs单晶生长相关的技术问题,分析了化学气相传输法的优缺点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雨萌
田甜
徐家跃
关键词:  外尔半金属  TaAs单晶  晶体生长  化学气相传输法    
Abstract: Weyl semimetal is a kind of materials whose low-energy quasiparticles excitations are Weyl fermions when two spin non-degenerate energy bands pass near the Fermi level in the three-dimensional (3D) momentum space. Weyl fermions are the massless solution to Dirac equation and can be regarded as two overlapped particles with opposite chirality in the three-dimensional momentum space. TaAs single crystal is a nonmagnetic Weyl semimetal in which the Weyl fermions can be observed directly and lead to several exotic physical properties, such as Fermi arcs, negative magneto-resistance, and quantum anomalous Hall effect, etc. It shows potential applications in the fields of new electronic devices and topological quantum computations. In this paper, we introduce the basic theory and significant experiments on Weyl semimetallic TaAs single crystal, with an emphasis on the technological issues related to the crystal growth of TaAs and the advantages and disadvantages of the chemical vapor transport method (CVT).
Key words:  Weyl semimetal    TaAs single crystal    crystal growth    chemical vapor transport method
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O782  
基金资助: *国家自然科学基金(51572175);上海高校青年教师培养资助计划项目(ZZyy15087);江苏省博士后科研资助计划(1501131C)
作者简介:  李雨萌:女,1989年生,硕士研究生,主要从事光电晶体材料的生长及其性能研究 田甜:通讯作者,男,1985年生,博士,讲师,主要从事光电晶体材料的研究 E-mail:holpfully@163.com;tiant@sit.edu.cn
引用本文:    
李雨萌, 田甜, 徐家跃. 外尔半金属TaAs单晶的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 120-125.
LI Yumeng, TIAN Tian, XU Jiayue. Research Progress on TaAs Single Crystal:The Weyl Semimetal. Materials Reports, 2017, 31(15): 120-125.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.018  或          https://www.mater-rep.com/CN/Y2017/V31/I15/120
1 Weyl H. Elektron und gravitation. I[J]. Zeitschrift für Physik A Hadrons and Nuclei,1929,56(5):330.
2 Brown L M. Idea of the neutrino[J]. Phys Today (United States),1978,31(9):23.
3 Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J].Phys Rev B,2011,83(20):205101.
4 Balents L. Viewpoint: Weyl electrons kiss[J]. Physics,2011,83(4):36.
5 Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J]. Phys Rev Lett,2011,107(18):186806.
6 Turner A M, Vishwanath A, Head C O. Beyond band insulators: Topology of semimetals and interacting phases[J]. Topological Insulators,2013,6:293.
7 Vafek O, Vishwanath A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals[J]. Annual Rev Condensed Matter Phys,2014,5(1):83.
8 Wehling T O, Black-Schaffer A M, Balatsky A V. Dirac materials[J]. Adv Phys,2014,63(1):1.
9 Huang X, Zhao L, Long Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Phys Rev X,2015,5(3):031023.
10 Zhang C, Yuan Z, Xu S, et al. Tantalum monoarsenide: An exotic compensated semimetal[J]. Phys Rev B,2017,95:085202.
11 Yang X, Li Y, Wang Z, et al. Observation of negative magnetoresistance and nontrivial π Berrys phase in 3D Weyl semi-metal NbAs[J]. arXiv:1506.02283,2015.
12 Shekhar C, Arnold F, Wu S C, et al. Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP[J]. http://arxiv. org/abs/1506.06577,2015,21.
13 Zhang C, Xu S Y, Belopolski I, et al. Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal[J]. http://arxiv. org/abs/1503.02630,2015.
14 Yang X, Liu Y, Wang Z, et al. Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs[J]. arXiv:1506.03190, 2015.
15 Wang Z, Zheng Y, Shen Z, et al. Helicity-protected ultrahigh mo-bility Weyl fermions in NbP[J]. Phys Rev B,2016,93(12):121112.
16 Ghimire N J, Luo Y, et al. Magnetotransport of single crystalline NbAs[J]. J Phys: Condensed Matter,2015,27(15):152201.
17 Parameswaran S A, Grover T, Abanin D A, et al. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals[J]. Phys Rev X,2014,4(3):031035.
18 Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals[J]. Nat Commun,2014,5:5161.
19 Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Phys Rev D,2008,78(7):074033.
20 Qian T. Weyl Fermions was experimentally found[J]. Chin Sci Bull,2015(27):2677(in Chinese).
钱天. 实验发现外尔费米子[J]. 科学通报, 2015(27):2677.
21 Fang Z, et al. The anomalous Hall effect and magnetic monopoles in momentum space[J]. Science,2003, 302(5642):92.
22 Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings Royal Soc A,1984,392(1802):45.
23 Weng H, Yu R, Hu X, et al. Quantum anomalous Hall effect and related topological electronic states[J]. Adv Phys,2015,64(3):227.
24 Burkov A A, Balents L. Weyl semimetal in a topological insulator multilayer[J]. Phys Rev Lett,2011,107(12):127205.
25 Bulmash D, Liu C X, Qi X L. Prediction of a Weyl semimetal in Hg1-x-yCdxMnyTe[J]. Phys Rev B,2014,89(8):081106.
26 Liu J, Vanderbilt D. Weyl semimetals from noncentrosymmetric topological insulators[J]. Phys Rev B,2014,90(15):155316.
27 Singh B, Sharma A, Lin H, et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors[J]. Phys Rev B, 2012,86(11):115208.
28 Hirayama M, Okugawa R, Ishibashi S, et al. Weyl node and spin texture in trigonal tellurium and selenium[J]. Phys Rev Lett,2015,114(20):206401.
29 Kim H J, Kim K S, Wang J F, et al. Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena[J]. Phys Rev Lett,2013,111(24):246603.
30 Li Q, Zhang C, et al. Chiral magnetic effect in ZrTe5[J]. Nat Phys,2016,12:550.
31 Wang Z, et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb)[J]. Phys Rev B,2012,85:195320.
32 Wang Z, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Phys Rev B,2013,88(12):125427.
33 Liu Z K, Zhou B, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science,2014,343(6173):864.
34 Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2[J]. Nat Commun,2014,5:3786.
35 Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topolo-gical Dirac semimetal Cd3As2[J]. Nat Mater,2014,13(7):677.
36 Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2[J]. Nat Mater,2014,13(9):851.
37 Xu S Y, Liu C, Kushwaha S K, et al. Observation of Fermi arc surface states in a topological metal[J]. Science,2015,347(6219):294.
38 Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides[J]. Phys Rev X,2015,5(1):011029.
39 Huang S M, Xu S Y, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J]. Nat Commun,2015,6:7373.
40 Xu S Y, Belopolski I, et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs[J]. Science,2015,349(6248):613.
41 Lv B Q, Weng H M, Fu B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Phys Rev X,2015,5(3):031013.
42 Yang L X, Liu Z K, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs[J]. Nat Phys,2015,11(9):728.
43 Xu S Y, Alidoust N, et al. Discovery of a Weyl Ffermion state with Fermi arcs in niobium arsenide[J]. Nat Phys 2015,11:748.
44 Xu S Y, Belopolski I, et al. Experimental discovery of a topological Weyl semimetal state in TaP[J]. Sci Adv,2015,1(10): e1501092.
45 Lv B Q, Xu N, Weng H M, et al. Observation of Weyl nodes in TaAs[J]. Nat Phys, 2015,11:724.
46 Shi M, Xu N, Weng H M, et al. Observation of Weyl nodes and Fermi arcs in TaP[J]. Physics,2015,11(9):1.
47 Boller H, Parthé E. The transposition structure of NbAs and of si-milar monophosphides and arsenides of niobium and tantalum[J]. Acta Crystallographica,1963,16(11):1095.
48 Saini G S, Calvert L D, Taylor J B. Preparation and characterization of crystals of MX-and MX2-type arsenides of niobium and tantalum[J]. Canadian J Chem,1964,42(3):630.
49 Furuseth S, Selte K, Kjekshus A, et al. On the arsenides and antimonides of tantalum[J]. Acta Chem Scandinavica,1965,19(95):42.
50 Murray J J, Taylor J B, Calvert L D, et al. Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides[J]. J Less Common Met,1976,46(2):311.
51 Willerström J O. Stacking disorder in NbP, TaP, NbAs and TaAs[J]. J Less Common Metals,1984,99(2):273.
52 Lv B Q, Muff S, Qian T, et al. Observation of Fermi-arc spin texture in TaAs[J]. Phys Rev Lett,2015,115(21):217601.
53 Besara T, Rhodes D, Chen K W, et al. Non-stoichiometry and defects in the Weyl semimetals TaAs, TaP, NbP, and NbAs[J]. arXiv:1511.03221, 2015.
54 Li Z, Chen H, Jin S, et al. Weyl semimetal TaAs: Crystal growth, morphology, and thermodynamics[J]. Cryst Growth Des,2016,16(3):1172.
55 Wan X G, Wang Q H. Weyl fermion, a mysterious particle in "lattice universe″[J]. Prog Phys,2015,35(5):189(in Chinese).
万贤纲, 王强华. “晶体宇宙” 中的神秘粒子: 外尔费米子[J]. 物理学进展,2015,35(5):189.
[1] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[2] 叶慧, 沈天成, 陈远志, 徐进. 太阳能电池用球形银颗粒的液相法制备研究[J]. 材料导报, 2024, 38(1): 22050236-5.
[3] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[4] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[5] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[6] 柴涛, 耿传刚, 房大然, 赵圣诗, 林小娉, 董允. 柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制[J]. 材料导报, 2023, 37(10): 21110055-6.
[7] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[8] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[9] 肖学峰, 徐家跃, 向卫东. 镥基闪烁晶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 12-19.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed