Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 145-152    https://doi.org/10.11896/j.issn.1005-023X.2017.04.030
  计算模拟 |
硝酸羟胺的热稳定性评估及热分解机理研究*
刘建国1, 安振涛1,2, 张倩1,2, 杜仕国1,2, 姚凯1, 王金3
1 军械工程学院弹药工程系, 石家庄 050003;
2 军械工程学院弹药保障与安全性评估军队重点实验室, 石家庄050003;
3 清华大学材料热分析中心, 北京 100084
Thermal Stability Evaluation and Thermal Decomposition Mechanism of
Hydroxylamine Nitrate
LIU Jianguo1, AN Zhentao1,2, ZHANG Qian1,2, DU Shiguo1,2, YAO Kai1, WANG Jin3
1 Department of Ammunition Engineering, Ordnance Engineering College, Shijiazhuang 050003;
2 Military Key Laboratory for Ammunition Support and Safety Evaluation, Ordnance Engineering College, Shijiazhuang 050003;
3 Centre of Material Thermal Analysis, Tsinghua University, Beijing 100084
下载:  全 文 ( PDF ) ( 1696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评估氧化剂硝酸羟胺的热稳定性,使用标准液体铝皿于3 K/min、4 K/min、5 K/min加热速率下进行热分析。借助非等温DSC曲线的参数值,应用Kissinger法和Ozawa法求得热分解反应的表观活化能和指前因子,根据Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式以及Zhao-Hu-Gao公式,计算硝酸羟胺的自加速分解温度和热爆炸临界温度,并对热分解机理函数进行了研究。设计了7条热分解反应路径,采用密度泛函理论B3LYP/6-311++G(d, p)方法对硝酸羟胺的热分解进行了动力学和热力学计算。计算结果表明,硝酸羟胺热分解的自加速分解温度TSADT=370.05 K,热爆炸临界温度Tbe0=388.68 K,Tbp0=397.54 K,热分解最可几机理函数的微分形式为fα=17×1-α18/17。硝酸羟胺热分解各路径中,动力学优先支持路径Path 6、Path 5、Path 4和Path 1生成NO和NO2,其次是Path 2、Path 7和Path 3生成N2和N2O。温度在373 K以下时,Path 1′反应无法自发进行,硝酸羟胺无法进行自发的热分解。从热力学的角度来看,硝酸羟胺在370.05 K以下储存是安全的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建国
安振涛
张倩
杜仕国
姚凯
王金
关键词:  硝酸羟胺  热分析  热稳定性  热分解机理  密度泛函理论    
Abstract: To evaluate the thermal stability of oxidizer hydroxylamine nitrate (HAN), the standard aluminum crucibles for liquid was used, and DSC measurements of hydroxylamine nitrate were performed using simultaneous thermal analysis at heating rates of 3 K/min, 4 K/min, 5 K/min. With the help of parameter values from the non-isothermal DSC curves of HAN, the thermal decomposition activation energy and pre-exponential constant were obtained by Kissinger method and Ozawa method. The self-acce-lerating decomposition temperature and thermal explosion temperature were calculated by Zhang-Hu-Xie-Li formula, Hu-Yang-Liang-Xie formula, Hu-Zhao-Gao method and Zhao-Hu-Gao method. And the most probable mechanism was studied. To study thermal decomposition mechanism, seven different paths of the thermal decomposition mechanism of hydroxylamine nitrate were designed, and density functional theory (DFT) with B3LYP/6-311++G (d, p) methods was used to carry out the kinetic analysis and thermodynamic analysis. The calculation results showed that TSADT=370.05 K, Tbe0=388.68 K,and Tbp0=397.54 K. Differential form of the most probable mechanism is 公式. Path 6, Path 5, Path 4 and Path 1 which produce NO and NO2 were supported in priority, and Path 2, Path 7 and Path 3 which produce N2 and N2O were supported in secondary place. When the temperature was below 373 K, the reaction of Path 1′ could not occur spontaneously, and thermal decomposition of hydroxylamine nitrate could not be spontaneous. From the perspective of thermodynamics, it is safe for hydroxylamine nitrate storage at 370.05 K.
Key words:  hydroxylamine nitrate    thermal analysis    thermal stability    thermal decomposition mechanism    density functional theory
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TJ55  
  O657.33  
基金资助: *国防预研项目(40404010313)
通讯作者:  张倩:通讯作者,女,1974年生,博士,副教授,研究方向为含能材料的合成与分子模拟 E-mail:zhangqian-zlf@163.com   
作者简介:  刘建国:男,1988年生,博士研究生,研究方向为含能材料的合成与分子模拟 E-mail:liujiangnan5676@163.com
引用本文:    
刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.030  或          http://www.mater-rep.com/CN/Y2017/V31/I4/145
1 Ulas A, Boysan E. Numerical analysis of regenerative cooling in li-quid propellant rocket engines[J]. Aerospace Sci Technol,2013,24(1):187.
2 Wei C Y, et al. Thermal decomposition hazard evaluation of hydroxylamine nitrate[J]. J Hazardous Mater,2006,130:163.
3 Diez F J, Hernaiz G, Miranda J J, et al. On the capabilities of nano electrokinetic thrusters for space propulsion[J]. Acta Astronautica,2013,83:97.
4 Dheeraj A, Basu P, Tharakan T J. Prediction of gas-core vortices during draining of liquid propellants from tanks[J]. Aerospace Sci Technol,2014,32(1):60.
5 Fu J, Chen X Q, Huang Y Y. Validation of a compression mass gauge using groud tests for liquid propellant mass measurements[J]. Adv Space Res,2014,53(9):1359.
6 Technical report on hydroxylamine nitrate[R].US Department of Energy,1998.
7 Rachid A, Toshiyuki K, Yosui N, et al. Performance and deactivation of Ir-based catalyst during hydroxylamine nitrate catalytic decomposition[J]. Appl Catal A: General,2013,452:64.
8 Dan A, Laurence C, Sylvie R, et al. Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor[J]. Chem Eng Process,2007,46:165.
9 Kai S K, Jitkai C, Tengku F, et al. Role of electrodes in ambient electrolytic decomposition of hydroxylamine nitrate (HAN) solutions[J]. Propulsion Power Res,2013,2(3):194.
10 Wang H T, Zhou J Y. Preparation of hydroxylamine nitrate (NH2-OH·HNO3) and its stabilizer[J]. Chem Propellants Polymeric Mater,2007,5(2):18(in Chinese).
汪洪涛, 周集义. 硝酸羟胺NH2OH·HNO3制备及其稳定剂综述[J]. 化学推进剂与高分子材料,2007,5(2):18.
11 Reshmi S, Vijayalakshmi K P, Thomas D, et al. Thermal decomposition of a diazido ester: Pyrolysis GC-MS and DFT study[J]. J Ana-lytical Appl Pyrolysis,2013,104:603.
12 Huang J B, Liu C, Tong H, et al. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Comput Theoretical Chem,2012,1001:44.
13 Liu C, Zhang Y Y, Huang X L. Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Process Technol,2014,123:159.
14 Wang S R, Ru B, Dai G X,et al.Pyrolysis mechanism study of mini-mally damaged hemicellulose polymers isolated from agricultural waste straw[J]. Bioresource Technol,2015,190:211.
15 Francis Stoessel. 化工工艺的热安全-风险评估与工艺设计[M]. 陈网桦, 彭金华, 陈利平, 译. 北京:科学出版社,2009:73.
16 Bao S L, Chen W H, Chen L P, et al. Identification and thermokinetics of autocatalytic exothermic decomposition of 2,4-dinitroto-luene[J]. Acta Phys Chim Sin,2013,29(3):479(in Chinese).
鲍士龙, 陈网桦, 陈利平, 等. 2,4-二硝基甲苯热解自催化特性鉴别及其热解动力学[J]. 物理化学学报,2013,29(3):479.
17 Xu L, Cui T B, Luo T L, et al. Thermal decomposition kinetics of benzoxazine-phenolic-epoxidized soybean oil copolymers[J]. Mater Rev:Res,2012,26(11):67(in Chinese).
徐丽, 崔铁兵, 雒廷亮, 等. 苯并噁嗪-酚醛-环氧豆油三元聚合体系的热分解行为研究[J]. 材料导报:研究篇,2012,26(11):67.
18 Hu R R, Gao H X, et al. Thermal safety of 1,1’-Dimethy-5,5’-azotetrazole and 2,2’-Dimethyl-5,5’-azotetrazole[J]. Chin J Energetic Mater,2011,19(2):126(in Chinese).
胡荣祖, 高红旭, 等. 1,1’-二甲基-5,5’-偶氮四唑-水合物和2,2’-二甲基-5,5’-偶氮四唑的热安全性[J].含能材料,2011,19(2):126.
19 Qi Z L, Zhang D F, Chen F X, et al. Thermal decomposition and non-isothermal decomposition kinetics of carbamazepine[J]. Russian J Phys Chem,2014,88(13):2308.
20 Zhao H A, Hu R Z, Wang X J, et al. Thermal safety of 1,3,3-Trinitroazetidine[J]. Acta Chim Sin,2009,67(22):2536(in Chinese).
赵宏安, 胡荣祖, 王喜军, 等. 1,3,3-三硝基氮杂环丁烷的热安全性[J]. 化学学报,2009,67(22):2536.
21 Lee H S, Litzinger T A. Chemical kinetic study of HAN decomposition[J]. Combustion Flame,2003,135:151.
22 Barney G S, Duval P B. Model for predicting hydroxylamine nitrate stability in plutonium process solutions[J]. J Loss Prevention Process Ind,2011,24:76.
23 Rachid A, Toshiyuki K, Noboru I, et al. New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications[J].Combustion Flame,2015,162:2686.
24 Zhang Z, Liu C, Li H J, et al. Theoretical studies of pyrolysis mechanism of xylan monomer[J]. Acta Chim Sin,2011,69(18):2099(in Chinese).
张智, 刘朝, 李豪杰, 等. 木聚糖单体热解机理的理论研究[J]. 化学学报,2011,69(18):2099.
25 Huang J B, Liu C, Wei S A, et al. Density functional theory study on the dehydration mechanism of glycerine[J]. Acta Chim Sin,2010,68(11):1043(in Chinese).
黄金保,刘朝,魏顺安,等. 丙三醇脱水反应机理的密度泛函理论研究[J]. 化学学报,2010,68(11):1043.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[3] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[4] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[5] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[6] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[7] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[8] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[9] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[10] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[11] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[12] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[13] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[14] 赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
[15] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed