Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 145-152    https://doi.org/10.11896/j.issn.1005-023X.2017.04.030
  计算模拟 |
硝酸羟胺的热稳定性评估及热分解机理研究*
刘建国1, 安振涛1,2, 张倩1,2, 杜仕国1,2, 姚凯1, 王金3
1 军械工程学院弹药工程系, 石家庄 050003;
2 军械工程学院弹药保障与安全性评估军队重点实验室, 石家庄050003;
3 清华大学材料热分析中心, 北京 100084
Thermal Stability Evaluation and Thermal Decomposition Mechanism of
Hydroxylamine Nitrate
LIU Jianguo1, AN Zhentao1,2, ZHANG Qian1,2, DU Shiguo1,2, YAO Kai1, WANG Jin3
1 Department of Ammunition Engineering, Ordnance Engineering College, Shijiazhuang 050003;
2 Military Key Laboratory for Ammunition Support and Safety Evaluation, Ordnance Engineering College, Shijiazhuang 050003;
3 Centre of Material Thermal Analysis, Tsinghua University, Beijing 100084
下载:  全 文 ( PDF ) ( 1696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评估氧化剂硝酸羟胺的热稳定性,使用标准液体铝皿于3 K/min、4 K/min、5 K/min加热速率下进行热分析。借助非等温DSC曲线的参数值,应用Kissinger法和Ozawa法求得热分解反应的表观活化能和指前因子,根据Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式以及Zhao-Hu-Gao公式,计算硝酸羟胺的自加速分解温度和热爆炸临界温度,并对热分解机理函数进行了研究。设计了7条热分解反应路径,采用密度泛函理论B3LYP/6-311++G(d, p)方法对硝酸羟胺的热分解进行了动力学和热力学计算。计算结果表明,硝酸羟胺热分解的自加速分解温度TSADT=370.05 K,热爆炸临界温度Tbe0=388.68 K,Tbp0=397.54 K,热分解最可几机理函数的微分形式为fα=17×1-α18/17。硝酸羟胺热分解各路径中,动力学优先支持路径Path 6、Path 5、Path 4和Path 1生成NO和NO2,其次是Path 2、Path 7和Path 3生成N2和N2O。温度在373 K以下时,Path 1′反应无法自发进行,硝酸羟胺无法进行自发的热分解。从热力学的角度来看,硝酸羟胺在370.05 K以下储存是安全的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建国
安振涛
张倩
杜仕国
姚凯
王金
关键词:  硝酸羟胺  热分析  热稳定性  热分解机理  密度泛函理论    
Abstract: To evaluate the thermal stability of oxidizer hydroxylamine nitrate (HAN), the standard aluminum crucibles for liquid was used, and DSC measurements of hydroxylamine nitrate were performed using simultaneous thermal analysis at heating rates of 3 K/min, 4 K/min, 5 K/min. With the help of parameter values from the non-isothermal DSC curves of HAN, the thermal decomposition activation energy and pre-exponential constant were obtained by Kissinger method and Ozawa method. The self-acce-lerating decomposition temperature and thermal explosion temperature were calculated by Zhang-Hu-Xie-Li formula, Hu-Yang-Liang-Xie formula, Hu-Zhao-Gao method and Zhao-Hu-Gao method. And the most probable mechanism was studied. To study thermal decomposition mechanism, seven different paths of the thermal decomposition mechanism of hydroxylamine nitrate were designed, and density functional theory (DFT) with B3LYP/6-311++G (d, p) methods was used to carry out the kinetic analysis and thermodynamic analysis. The calculation results showed that TSADT=370.05 K, Tbe0=388.68 K,and Tbp0=397.54 K. Differential form of the most probable mechanism is 公式. Path 6, Path 5, Path 4 and Path 1 which produce NO and NO2 were supported in priority, and Path 2, Path 7 and Path 3 which produce N2 and N2O were supported in secondary place. When the temperature was below 373 K, the reaction of Path 1′ could not occur spontaneously, and thermal decomposition of hydroxylamine nitrate could not be spontaneous. From the perspective of thermodynamics, it is safe for hydroxylamine nitrate storage at 370.05 K.
Key words:  hydroxylamine nitrate    thermal analysis    thermal stability    thermal decomposition mechanism    density functional theory
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TJ55  
  O657.33  
基金资助: *国防预研项目(40404010313)
通讯作者:  张倩:通讯作者,女,1974年生,博士,副教授,研究方向为含能材料的合成与分子模拟 E-mail:zhangqian-zlf@163.com   
作者简介:  刘建国:男,1988年生,博士研究生,研究方向为含能材料的合成与分子模拟 E-mail:liujiangnan5676@163.com
引用本文:    
刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.030  或          https://www.mater-rep.com/CN/Y2017/V31/I4/145
1 Ulas A, Boysan E. Numerical analysis of regenerative cooling in li-quid propellant rocket engines[J]. Aerospace Sci Technol,2013,24(1):187.
2 Wei C Y, et al. Thermal decomposition hazard evaluation of hydroxylamine nitrate[J]. J Hazardous Mater,2006,130:163.
3 Diez F J, Hernaiz G, Miranda J J, et al. On the capabilities of nano electrokinetic thrusters for space propulsion[J]. Acta Astronautica,2013,83:97.
4 Dheeraj A, Basu P, Tharakan T J. Prediction of gas-core vortices during draining of liquid propellants from tanks[J]. Aerospace Sci Technol,2014,32(1):60.
5 Fu J, Chen X Q, Huang Y Y. Validation of a compression mass gauge using groud tests for liquid propellant mass measurements[J]. Adv Space Res,2014,53(9):1359.
6 Technical report on hydroxylamine nitrate[R].US Department of Energy,1998.
7 Rachid A, Toshiyuki K, Yosui N, et al. Performance and deactivation of Ir-based catalyst during hydroxylamine nitrate catalytic decomposition[J]. Appl Catal A: General,2013,452:64.
8 Dan A, Laurence C, Sylvie R, et al. Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor[J]. Chem Eng Process,2007,46:165.
9 Kai S K, Jitkai C, Tengku F, et al. Role of electrodes in ambient electrolytic decomposition of hydroxylamine nitrate (HAN) solutions[J]. Propulsion Power Res,2013,2(3):194.
10 Wang H T, Zhou J Y. Preparation of hydroxylamine nitrate (NH2-OH·HNO3) and its stabilizer[J]. Chem Propellants Polymeric Mater,2007,5(2):18(in Chinese).
汪洪涛, 周集义. 硝酸羟胺NH2OH·HNO3制备及其稳定剂综述[J]. 化学推进剂与高分子材料,2007,5(2):18.
11 Reshmi S, Vijayalakshmi K P, Thomas D, et al. Thermal decomposition of a diazido ester: Pyrolysis GC-MS and DFT study[J]. J Ana-lytical Appl Pyrolysis,2013,104:603.
12 Huang J B, Liu C, Tong H, et al. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Comput Theoretical Chem,2012,1001:44.
13 Liu C, Zhang Y Y, Huang X L. Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Process Technol,2014,123:159.
14 Wang S R, Ru B, Dai G X,et al.Pyrolysis mechanism study of mini-mally damaged hemicellulose polymers isolated from agricultural waste straw[J]. Bioresource Technol,2015,190:211.
15 Francis Stoessel. 化工工艺的热安全-风险评估与工艺设计[M]. 陈网桦, 彭金华, 陈利平, 译. 北京:科学出版社,2009:73.
16 Bao S L, Chen W H, Chen L P, et al. Identification and thermokinetics of autocatalytic exothermic decomposition of 2,4-dinitroto-luene[J]. Acta Phys Chim Sin,2013,29(3):479(in Chinese).
鲍士龙, 陈网桦, 陈利平, 等. 2,4-二硝基甲苯热解自催化特性鉴别及其热解动力学[J]. 物理化学学报,2013,29(3):479.
17 Xu L, Cui T B, Luo T L, et al. Thermal decomposition kinetics of benzoxazine-phenolic-epoxidized soybean oil copolymers[J]. Mater Rev:Res,2012,26(11):67(in Chinese).
徐丽, 崔铁兵, 雒廷亮, 等. 苯并噁嗪-酚醛-环氧豆油三元聚合体系的热分解行为研究[J]. 材料导报:研究篇,2012,26(11):67.
18 Hu R R, Gao H X, et al. Thermal safety of 1,1’-Dimethy-5,5’-azotetrazole and 2,2’-Dimethyl-5,5’-azotetrazole[J]. Chin J Energetic Mater,2011,19(2):126(in Chinese).
胡荣祖, 高红旭, 等. 1,1’-二甲基-5,5’-偶氮四唑-水合物和2,2’-二甲基-5,5’-偶氮四唑的热安全性[J].含能材料,2011,19(2):126.
19 Qi Z L, Zhang D F, Chen F X, et al. Thermal decomposition and non-isothermal decomposition kinetics of carbamazepine[J]. Russian J Phys Chem,2014,88(13):2308.
20 Zhao H A, Hu R Z, Wang X J, et al. Thermal safety of 1,3,3-Trinitroazetidine[J]. Acta Chim Sin,2009,67(22):2536(in Chinese).
赵宏安, 胡荣祖, 王喜军, 等. 1,3,3-三硝基氮杂环丁烷的热安全性[J]. 化学学报,2009,67(22):2536.
21 Lee H S, Litzinger T A. Chemical kinetic study of HAN decomposition[J]. Combustion Flame,2003,135:151.
22 Barney G S, Duval P B. Model for predicting hydroxylamine nitrate stability in plutonium process solutions[J]. J Loss Prevention Process Ind,2011,24:76.
23 Rachid A, Toshiyuki K, Noboru I, et al. New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications[J].Combustion Flame,2015,162:2686.
24 Zhang Z, Liu C, Li H J, et al. Theoretical studies of pyrolysis mechanism of xylan monomer[J]. Acta Chim Sin,2011,69(18):2099(in Chinese).
张智, 刘朝, 李豪杰, 等. 木聚糖单体热解机理的理论研究[J]. 化学学报,2011,69(18):2099.
25 Huang J B, Liu C, Wei S A, et al. Density functional theory study on the dehydration mechanism of glycerine[J]. Acta Chim Sin,2010,68(11):1043(in Chinese).
黄金保,刘朝,魏顺安,等. 丙三醇脱水反应机理的密度泛函理论研究[J]. 化学学报,2010,68(11):1043.
[1] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[4] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[5] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[6] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[7] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[8] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[9] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[10] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[11] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[12] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[13] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[14] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[15] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed