Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070060-8    https://doi.org/10.11896/cldb.23070060
  高分子与聚合物基复合材料 |
外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究
李亚莎1,2,*, 郭玉杰1,2, 夏宇3, 王佳敏1,2, 晏欣悦1,2, 陈俊璋1,2
1 三峡大学电气与新能源学院,湖北 宜昌 443002
2 湖北省输电线路工程技术研究中心,湖北 宜昌 443002
3 国网冀北电力有限公司超高压分公司,北京 102488
Study on the Microscopic Properties of Ethylene-propylene-diene Monomer and Its Effect on Surface Discharge Under External Electric Field
LI Yasha1,2,*, GUO Yujie1,2, XIA Yu3, WANG Jiamin1,2, YAN Xinyue1,2, CHEN Junzhang1,2
1 College of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
2 Hubei Provincial Engineering Technology Research Center for Power Transmission Line, Yichang 443002, Hubei, China
3 EHV Power Transmission Company, State Grid Jibei Electric Power Co., Ltd., Beijing 102488, China
下载:  全 文 ( PDF ) ( 9077KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三元乙丙橡胶(EPDM)作为一种功能性材料,在中高压电缆绝缘领域颇受关注,但实际运行环境恶劣,沿面放电现象时有发生。为了从微观层面探讨三元乙丙橡胶沿面放电特性,采用密度泛函理论分析了分子几何结构、轨道能级、陷阱深度、态密度、静电势、激发态等微观性质。结果表明,电场增加,EPDM分子链逐渐延展伸直,偶极矩渐渐增大至8.164 D;第三单体附近区域逐渐演变为电子陷阱,陷阱深度随电场增大由0.740 eV减小至0.043 eV,数量增加;碳碳双键亲电性使第三单体区域电子更加活泼,容易加剧电子崩的发展。外电场的增大使得EPDM分子链的激发能逐渐减小,且吸收峰发生红移,电子在此时易被激发,第三单体区域为主要激发区域,被激发后的电子返回基态轨道时会释放出光子,容易在表面气体中形成空间光电离,诱导沿面放电的发生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
郭玉杰
夏宇
王佳敏
晏欣悦
陈俊璋
关键词:  密度泛函理论  三元乙丙橡胶  外电场  沿面放电  激发态    
Abstract: Ethylene-propylene-diene monomer (EPDM), as a functional material, has attracted much attention in the field of medium and high voltage cable insulation. However, the actual service environment is harsh, and the surface discharge phenomenon occurs occasionally. In order to study the surface discharge characteristics of ethylene-propylene-diene monomer from the microscopic level, the density functional theory was used to analyze the molecular geometry, orbital energy levels, trap depth, density of states, electrostatic potential, excited state and other microscopic properties. The calculated results show that with the increase of electric field, the EPDM molecular chain extends and straightens gradually, and the dipole moment gradually increases to 8.164 D. The region near the third monomer gradually evolves into electron traps, and the trap depth decreases from 0.740 eV to 0.043 eV with the increase of electric field, and their number increases. The electrophilicity of carbon-carbon double bond makes the electrons in the third monomer region more active, which easily aggravates the development of electron avalanche. With the increase of external electric field, the excitation energy of EPDM molecular chain decreases gradually, and the absorption peak is red shifted, and electrons are easily excited at this time. The third monomer region is the main excitation region. When the excited electrons return to the ground state orbit, they will release photons, which is easy to form space photoionization in the surface gas, and induce the occurrence of surface discharge.
Key words:  density functional theory    ethylene-propylene-diene monomer    external electric field    surface discharge    excited state
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TM211  
基金资助: 国家自然科学基金(51577105)
通讯作者:  * 李亚莎,三峡大学电气与新能源学院教授、博士研究生导师。1989年毕业于聊城大学物理科学与信息工程学院物理学专业,2002—2007年于华北电力大学(北京)电气与电子工程学院电气工程及其自动化专业获得硕士、博士学位。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等研究工作。发表论文70余篇。liyasha@ctgu.edu.cn   
引用本文:    
李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
LI Yasha, GUO Yujie, XIA Yu, WANG Jiamin, YAN Xinyue, CHEN Junzhang. Study on the Microscopic Properties of Ethylene-propylene-diene Monomer and Its Effect on Surface Discharge Under External Electric Field. Materials Reports, 2024, 38(23): 23070060-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070060  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070060
1 Wang S Y, Liu Y, Lei Z P, et al. Insulating Materials, 2022, 55(4), 56 (in Chinese).
王思宇, 刘洋, 雷志鹏, 等. 绝缘材料, 2022, 55(4), 56.
2 Nunes S P, Da Costa R A, Barbosa S P, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 1986, 24(1), 99.
3 Bolliger D A, Boggs S A. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3), 996.
4 Lei Z P. Dielectric properties of epr and partial discharge mechanism occurring in cavities and along surface of EPR. Ph. D. Thesis, Taiyuan University of Technology, China, 2015 (in Chinese).
雷志鹏. 乙丙橡胶绝缘介电性能及其气隙和沿面放电机理的研究. 博士学位论文, 太原理工大学, 2015.
5 He H Q, Wang X, Liu S J, et al. Insulating Materials, 2006, 39(5), 40 (in Chinese).
何华琴, 王霞, 刘胜军, 等. 绝缘材料, 2006, 39(5), 40.
6 Guo L, Cao W D, Bai L L, et al. High Voltage Engineering, 2021, 47(1), 231 (in Chinese).
郭蕾, 曹伟东, 白龙雷, 等. 高电压技术, 2021, 47(1), 231.
7 Bai L L, Zhou L J, Liu C, et al. Journal of the China Railway Society, 2021, 43(5), 62(in Chinese).
白龙雷, 周利军, 刘聪, 等. 铁道学报, 2021, 43(5), 62.
8 Zidane O, Haller R, El-Refaie E S M, et al. In: 2020 International conference on diagnostics in electrical engineering (diagnostika). Pilsen, Czech Republic, 2020.
9 Guo L, Cao W D, Bai L L, et al. Journal of Southwest Jiaotong University, 2021, 56(5), 1011 (in Chinese).
郭蕾, 曹伟东, 白龙雷, 等. 西南交通大学学报, 2021, 56(5), 1011.
10 Du B X, Su J G, Tian M, et al. Scientific Reports, 2018, 8, 8481.
11 Lan L, Wu J D, Wang Y N, et al. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(5), 1266 (in Chinese).
兰莉, 吴建东, 王雅妮, 等. 中国电机工程学报, 2015, 35(5), 1266.
12 Xu X X, Lei Z P, Song J C, et al. High Voltage Apparatus, 2019, 55(5), 161 (in Chinese).
徐晓晓, 雷志鹏, 宋建成, 等. 高压电器, 2019, 55(5), 161.
13 Zhang K F, Zhang L, Li Z W, et al. Transactions of China Electrotechnical Society, 2019, 34(15), 3275 (in Chinese).
张开放, 张黎, 李宗蔚, 等. 电工技术学报, 2019, 34(15), 3275.
14 Li Y S, Xia Y, Liu S C, et al. Acta Physica Sinica, 2022, 71(5), 119(in Chinese).
李亚莎, 夏宇, 刘世冲, 等. 物理学报, 2022, 71(5), 119.
15 Takada T, Kikuchi H, Miyake H, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2), 1240.
16 Wang W W, Tanaka Y, Takada T, et al. In: 2017 International symposium on electrical insulating materials (ISEIM). Toyohashi, Japan, 2017, pp.176.
17 Li Q M, Huang X W, Xiao Y, et al. High Voltage Apparatus, 2019, 55(2), 39 (in Chinese).
李庆民, 黄旭炜, 肖伊, 等. 高压电器, 2019, 55(2), 39.
18 Wang Y J, Yang Y Y, Wang L B. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2021, 22(7), 499.
19 Liang Y, Gao T, Wang X N, et al. Transactions of China Electrotechnical Society, 2020, 35(7), 1575 (in Chinese).
梁英, 高婷, 王祥念, 等. 电工技术学报, 2020, 35(7), 1575.
20 Zhai P F, Peng Y F, Han X Y. Insulators and Surge Arresters, 2021(2), 212 (in Chinese).
翟鹏飞, 彭玉峰, 韩雪云. 电瓷避雷器, 2021(2), 212.
21 Frish M J, Trucks G W, Schlegel H B. 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc.
22 Xu L, Liu X F. Polymeric Materials Science and Engineering, 2021, 37(7), 123 (in Chinese).
徐林, 刘曦非. 高分子材料科学与工程, 2021, 37(7), 123.
23 Li L L, Zhang X H, Wang Y L, et al. High Voltage Engineering, 2017, 43(9), 2866 (in Chinese).
李丽丽, 张晓虹, 王玉龙, 等. 高电压技术, 2017, 43(9), 2866.
24 Li Y S, Qu C, Xia Y, et al. High Voltage Engineering, DOI:10.13336/j.1003-6520.hve.20221613 (in Chinese).
李亚莎, 瞿聪, 夏宇, 等. 高电压技术, DOI:10.13336/j.1003-6520.hve.20221613.
25 Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5), 580.
26 Lu T, Chen F. Journal of Molecular Graphics & Modelling, 2012, 38, 314.
27 Zhang J, Lu T. Physical Chemistry Chemical Physics, 2021, 23, 20323.
28 Qing R. Chinese Journal of High Pressure Physics, 2019, 33(3), 4 (in Chinese).
覃睿. 高压物理学报, 2019, 33(3), 4.
29 Liu Z Y, Lu T, Chen Q X. Carbon, 2020, 165, 461.
30 Liu Z Y, Wang X, Lu T, et al. Carbon, 2022, 187, 78.
31 Xu H, Du B X, Su J G. High Voltage Engineering, 2017, 43(2), 453 (in Chinese).
徐航, 杜伯学, 苏金刚. 高电压技术, 2017, 43(2), 453.
32 Computational Chemistry Comparison and Benchmark Data Base. https://cccbdb.nist.gov/vibscalejustx.asp.
33 Zhen C C, Zuo P Y, Feng S H. China Rubber Industry, 2014, 61(12), 731 (in Chinese).
郑丛丛, 左培艳, 冯绍华. 橡胶工业, 2014, 61(12), 731.
34 Liu Y, Wang X. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6), 2027.
35 Liao R J, Lu Y C, Yang L J, et al. Insulating Materials, 2006, 39(6), 51 (in Chinese).
廖瑞金, 陆云才, 杨丽君, 等. 绝缘材料, 2006, 39(6), 51.
36 Min D M, Li S T, Hirai N, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1), 537.
37 Li L L, Zhang X H, Wang Y L, et al. Acta Physica Sinica, 2017, 66(8), 316 (in Chinese).
李丽丽, 张晓虹, 王玉龙, 等. 物理学报, 2017, 66(8), 316.
38 Wang S F. Study on the surface electrical tracking failure mechanism and evaluation method for ethylene propylene rubber under HVAC. Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
王少飞. 交流高压下乙丙橡胶绝缘表面电痕破坏机理及其评估方法的研究. 硕士学位论文, 太原理工大学, 2018.
39 Li Z Y. Insulation modifications and electrical properties of EPDM used for high voltage DC cable accessories. Ph. D. thesis, Harbin University of Science and Technology, China, 2021 (in Chinese).
李中原. 高压直流电缆附件三元乙丙橡胶绝缘改性与电气性能研究. 博士学位论文, 哈尔滨理工大学, 2021.
[1] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[2] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[3] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[4] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[5] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[6] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[7] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[8] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[9] 文华银, 张文焕, 贺婉, 刘涛, 罗世凯, 周元林. 超临界CO2制备三元乙丙橡胶微孔泡沫[J]. 材料导报, 2021, 35(2): 2166-2170.
[10] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[11] 杜飞跃, 周徐, 谢叔媚, 王二静, 王世敏. 兼具聚集诱导发光和激发态分子内质子转移特性的有机小分子发光体[J]. 材料导报, 2020, 34(Z1): 498-502.
[12] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[13] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[14] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[15] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed