Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21110223-6    https://doi.org/10.11896/cldb.21110223
  高分子与聚合物基复合材料 |
铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究
郭静, 宋旭锋, 于艳敏*, 高倩倩
北京工业大学环境与生命学部,绿色催化与分离北京市重点实验室,北京 100124
Density Functional Theory Study on α-C-H Bond Oxidation of o-Nitro-Substituted Arenes and p-Nitro-Substituted Arenes Catalyzed by Iron Porphyrin
GUO Jing, SONG Xufeng, YU Yanmin*, GAO Qianqian
Beijing Key Laboratory for Green Catalysis and Separation,Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用密度泛函理论方法对铁卟啉催化氧化邻、对硝基取代芳烃(甲苯、乙苯、异丙苯)α-C-H键的反应进行研究,并将其与无硝基取代芳烃α-C-H键的氧化反应进行比较,重点考察铁卟啉催化氧化邻硝基取代芳烃和对硝基取代芳烃α-C-H键反应活性的差异,并探究影响反应活性的本质因素。通过计算取代芳烃α-C-H键的键解离能及铁卟啉催化氧化芳烃α-C-H键的反应活化能发现,由于硝基与苯环的共轭效应,对硝基取代芳烃α-C-H键的键解离能减小,铁卟啉高价金属氧化物氧化对硝基取代芳烃α-C-H键反应的活化能较低。邻硝基取代芳烃除共轭效应外还存在空间位阻效应,且空间位阻效应占主导作用。空间位阻效应使得邻硝基取代芳烃α-C-H键的键解离能增大,铁卟啉高价金属氧化物氧化邻硝基取代芳烃α-C-H键反应的活化能较高。对芳烃α-C-H键氧化反应的活化能进一步分析发现,过渡态结构中芳烃与铁卟啉高价金属氧化物之间的相互作用能相对较小,形变能是影响反应活化能的主要因素,且形变能主要来自于芳烃分子的形变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭静
宋旭锋
于艳敏
高倩倩
关键词:  铁卟啉  催化氧化  芳烃  α-C-H键  密度泛函理论    
Abstract: The catalytic oxidations of α-C-H bond in o-nitro-substituted arenes and p-nitro-substituted arenes (toluene, ethylbenzene and cumene) by iron porphyrin were studied using density functional theory. The calculation results were compared with those of α-C-H bond oxidation in arenes without nitro substituent. The reactivity difference of α-C-H bond oxidation between o-nitro-substituted arenes and p-nitro-substituted arenes catalyzed by iron porphyrin were focused on and the essential factors affecting the reactivity were explored. By calculating the bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation in arenes by iron porphyrin, it is found that the conjugation effect between nitro and benzene ring in p-nitro-substituted arenes reduce the bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation by high-valent iron-oxo porphyrin. In o-nitro-substituted arenes, there are not only conjugation effect, but also steric hindrance effect. The steric hindrance effect is dominant in o-nitro-substituted arenes. The bond dissociation energy of α-C-H bond and the activation energy of α-C-H bond oxidation by high-valent iron-oxo porphyrin increase due to the steric hindrance effect. Further decomposition of the activation energy of α-C-H bond oxidation reveals that the interaction energy between the arene and high-valent iron-oxo porphyrin in the transition structure is relatively weak and the distortion energy is the main factor affecting the activation energy. The distortion energy mainly comes from the distortion of the arene molecule.
Key words:  iron porphyrin    catalytic oxidation    arene    α-C-H bond    density functional theory
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  O643.3  
基金资助: 国家自然科学基金(21776021);北京高校卓越青年科学家计划项目(BJJWZYJH0201910005017)
通讯作者:  *于艳敏,2006年毕业于中国科学技术大学,获博士学位。现为北京工业大学环境与生命学部副研究员、硕士研究生导师。主要从事卟啉化合物的理论与计算研究。发表论文20余篇。ymyu@bjut.edu.cn   
作者简介:  郭静,2019年7月毕业于信阳师范学院,获得工学学士学位。现为北京工业大学环境化工系硕士研究生,在于艳敏副研究员的指导下进行研究。目前主要研究领域为卟啉化合物的理论与计算模拟。
引用本文:    
郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
GUO Jing, SONG Xufeng, YU Yanmin, GAO Qianqian. Density Functional Theory Study on α-C-H Bond Oxidation of o-Nitro-Substituted Arenes and p-Nitro-Substituted Arenes Catalyzed by Iron Porphyrin. Materials Reports, 2023, 37(8): 21110223-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110223  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21110223
1 Lv X D, Xiao G B, Feng X X, et al. Dyes and Pigments, 2019, 160, 957.
2 Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056), 629.
3 Yuan Q T, Yu Y M, Song X F. Material Reports, 2021, 35(9), 9210 (in Chinese).
袁清堂, 于艳敏, 宋旭锋.材料导报, 2021, 35(9), 9210.
4 Farinone M, Urbańska K, Pawlicki M. Molecules, 2020, 25(19), 4523.
5 Ji D F, Shi T T, Chang H,et al. Material Reports A:Review Papers, 2018, 32(9), 3068 (in Chinese).
姬东方, 史婷婷, 常欢, 等.材料导报:综述篇, 2018, 32(9), 3068.
6 Can F, Demirci O C, Dumoulin F, et al. Applied Surface Science, 2017, 420, 625.
7 Huang X Y, Groves J T. Journal of Biological Inorganic Chemistry, 2017, 22(2-3), 185.
8 Wang Q M, Chen X H, Li G J, et al. Journal of Organic Chemistry, 2019, 84(21), 13755.
9 Fang K, Li G J, She Y B. Journal of Organic Chemistry, 2018, 83(15), 8092.
10 Yang F Z, Zhang H, Liu X R, et al. Chinese Journal of Organic Chemistry, 2019, 39(1), 59 (in Chinese).
杨帆致, 张晗, 刘旭日, 等.有机化学, 2019, 39(1), 59.
11 Lubov D P, Talsi E P, Bryliakov K P. Russian Chemical Reviews, 2020, 89(6), 587.
12 Deng W, Wan Y P, Jiang H, et al. Catalysis Letters, 2014, 144(2), 333.
13 Riaz S, Nasir M, Iqbal J, et al. Research on Chemical Intermediates, 2015, 41(9), 6283.
14 Shen H M, Qi B, Hu M Y, et al. Catalysis Letters, 2020, 150(11), 3096.
15 Wang P, She Y B, Fu H Y, et al. Russian Journal of Applied Chemistry, 2015, 88(5), 885.
16 Yang Y N, Li G J, Mao X B, et al. Organic Process Research & Development, 2019, 23(5), 1078.
17 Shen H M, Liu L, Qi B, et al. Molecular Catalysis, 2020, 493, 111102.
18 Shen H M, Liu L, Qi B, et al. Applied Catalysis A:General, 2020, 599, 117599.
19 Chen Z H, Qin H, Yang P, et al. Journal of Functional Materials, 2022, 53(12), 12092 (in Chinese).
陈梓慧,秦撼,杨鹏,等. 功能材料,2022, 53(12), 12092.
20 He Z W, Tian H, Huang Z J,et al. Material Reports B:Research Papers, 2020, 34(3), 6180 (in Chinese).
何正文, 田红, 黄章俊, 等.材料导报:研究篇, 2020, 34(3), 6180.
21 Wang H, Ji D F, Yu Y M, et al. Chemical Industry and Engineering Progress, 2020, 39(10), 4002 (in Chinese).
王浩, 姬东方, 于艳敏, 等.化工进展, 2020, 39(10), 4002.
22 Groves J T, McClusky G A. Journal of the American Chemical Society, 1976, 98(3), 859.
23 Schröder D, Shaik S, Schwarz H. Accounts of Chemical Research, 2000, 33(3), 139.
24 Shaik S, Cohen S, De Visser S P, et al. European Journal of Inorganic Chemistry, 2004, 2004(2), 207.
25 De Visser S P. Chemistry-A European Journal, 2006, 12(31), 8168.
26 Hazan C, Kumar D, De Visser S P, et al. European Journal of Inorganic Chemistry, 2007, 2007(18), 2966.
27 Filatov M, Harris N, Shaik S. Journal of the Chemical Society, Perkin Transactions 2, 1999(3), 399.
28 Shaik S, De Visser S P, Ogliaro F, et al. Current Opinion in Chemical Biology, 2002, 6(5), 556.
29 Meunier B, De Visser S P, Shaik S. Chemical Reviews, 2004, 104(9), 3947.
30 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, revision. A.03. , Gaussian, Inc.: Wallingford CT, 2016.
31 Lee C, Yang W T, Parr R G. Physical Review B, 1988, 37(2), 785.
32 Becke A D. Journal of Chemical Physics, 1992, 96(3), 2155.
33 Becke A D. Journal of Chemical Physics,1992, 97(12), 9173.
34 Becke A D. Journal of Chemical Physics, 1993, 98(7), 5648.
35 Kang Y, Chen H, Jeong Y J, et al. Chemistry-A European Journal, 2009, 15(39), 10039.
36 Cho K B, Hirao H, Shaik S, et al. Chemical Society Reviews, 2016, 45(5), 1197.
37 Hay P J, Wadt W R. Journal of Chemical Physics, 1985, 82(1), 299.
38 Ehlers A W, Böhme M, Dapprich S, et al. Chemical Physics Letters, 1993, 208(1-2), 111.
39 Roy L E, Hay P J, Martin R L. Journal of Chemical Theory and Computation, 2008, 4(7), 1029.
40 Ditchfield R, Hehre W J, Pople J A. Journal of Chemical Physics, 1971, 54(2), 724.
41 Hehre W J, Ditchfield R, Pople J A. Journal of Chemical Physics, 1972, 56(5), 2257.
42 Hariharan P C, Pople J A. Theoretica Chimica Acta, 1973, 28, 213.
43 Marenich A V, Cramer C J, Truhlar D G. Journal of Physical Chemistry B, 2009, 113(18), 6378.
44 Ess D H, Houk K N. Journal of the American Chemical Society, 2007, 129(35), 10646.
[1] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[2] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[3] 徐光霁, 范剑伟, 马涛, 朱雅婧, 李树仁. 高掺量废胎胶粉改性沥青性能研究[J]. 材料导报, 2022, 36(16): 21120239-8.
[4] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[5] 王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
[6] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[7] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[8] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[9] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[10] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[11] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[12] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[13] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[14] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[15] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed