Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21030095-6    https://doi.org/10.11896/cldb.21030095
  无机非金属及其复合材料 |
过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧
王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国
济南大学水利与环境学院,济南 250022
Soot Combustion Catalyzed by Transition Metal Doped Tin-based Oxide Solid Solution
WANG Baoqin, WANG Ben, LENG Yuning, WANG Zhongpeng, LI Huafang, SHENG Hui, LIU Wei, WANG Liguo
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
下载:  全 文 ( PDF ) ( 4478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用十六烷基三甲基溴化铵(CTAB)辅助共沉淀法制备了过渡金属(Mn、Fe、Co和Ni)掺杂的介孔锡基固溶体氧化物,用于柴油车碳烟的催化燃烧。利用XRD、SEM、氮气吸脱附、拉曼光谱、氢气程序升温还原(H2-TPR)和FTIR等手段对催化剂理化性质进行表征;采用程序升温氧化技术(TPO)研究催化碳烟的燃烧活性。少量过渡金属掺杂SnO2可形成四方金红石结构的氧化物固溶体;经过在马弗炉中800 ℃煅烧6 h后,SnO2基固溶体的纳米球直径为20~30 nm,氧化物仍能保持相对较大的比表面积(20~40 m2·g-1),同时过渡金属掺杂增大了孔径尺寸;固溶体中过渡金属和Sn存在强相互作用,改善了表面氧的移动性和氧化还原性能。过渡金属掺杂诱导固溶体产生结构缺陷,促进了表面氧的可移动性,这也有利于表面氧化反应进行。与非催化反应相比,SnO2催化剂表现出良好的碳烟催化燃烧活性,而掺杂过渡金属后其活性和选择性进一步提升,且碳烟燃烧速率加快,这与其提高的氧化还原能力、增加的表面氧空位以及改善的孔结构有关;其中MnSn具有最佳的催化活性,其碳烟起燃温度(T10)为320 ℃,半转化温度(T50)为375 ℃,CO2选择性达到96%。此外,反应气氛中NO的存在可进一步促进锡基固溶体催化碳烟燃烧,反应遵循NO2辅助氧化机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宝钦
王犇
冷雨凝
王仲鹏
李华芳
盛会
刘伟
王立国
关键词:  二氧化锡  固溶体  过渡金属  碳烟颗粒  催化氧化    
Abstract: Aseries of SnO2-based solid solutions TM-SnO2 (TM=Mn, Fe, Co, Ni) with mesoporous structures were prepared by CTAB-assisted coprecipitation method for catalytic combustion of diesel soot particulates. The solid solutions were characterized by XRD, SEM, N2 adsorption-desorption, Raman spectrum, H2-TPR and FTIR technologies. Their catalytic activity for soot combustion was investigated by temperature programmed oxidation. Doping the SnO2 with small amounts of transition metals could form a stable solid solution with rutile structure. After calcination at 800 ℃ for 6 h, the SnO2-based solid solutions displayed nanospheres with diameter of 20—30 nm and relatively large surface areas of 20—40 m2·g-1, while transition metal doping increased the pore size. A strong interaction between Sn and transition metals occurred in the solid solution, improving the mobility of the surface oxygen and redox properties. The improved oxygen mobility might be derived from the structure defects induced by transition metals doping, which could be helpful in oxidation reactions. In comparison with uncatalyzed reactions, the SnO2 catalyst exhibited moderate catalytic activity for soot combustion, while the SnO2-based solid solutions doped with transition metals displayed enhanced activity and selectivity, together with increased soot combustion rates. The improved catalytic performance may be related to their enhanced the reducibility, increased surface oxygen vacancies and improved pore structure. The MnSn catalyst possessed the highest performance with the ignition temperature (T10) of 320 ℃, the semi-conversion temperature (T50) of 375 ℃, and the selectivity to CO2 formation of above 96%. Furthermore, the presence of NO in the reaction atmosphere promoted soot combustion over SnO2-based solid solutions, which follows the NO2-assisted mechanism.
Key words:  tin dioxide    solid solution    transition metal    soot particulates    catalytic oxidation
发布日期:  2022-06-09
ZTFLH:  O643  
基金资助: 国家自然科学基金(21777055);山东省重点研发计划(2019GSF109116)
通讯作者:  chm_wangzp@ujn.edu.cn   
作者简介:  王宝钦,济南大学环境科学与工程专业硕士研究生。2018年毕业于济南大学,获工学学士学位。硕士研究生期间主要从事锡基氧化物催化碳烟颗粒物燃烧性能的研究,参与了国家自然科学基金和山东省重点研发计划项目。
王仲鹏,济南大学教授、博士研究生导师。2007年毕业于上海交通大学,获工学博士学位。主要从事大气污染控制、机动车尾气催化净化、烟气脱硝和环境光催化等方面的研究。主持与参与了国家高技术研究发展计划(863计划)、国家自然科学基金项目、GM-中国科学研究基金、国家科技支撑计划子课题、山东省重点研发计划、山东省优秀中青年科学家奖励基金以及美国能源基金会可持续能源项目等研究课题;在国内外高水平学术刊物公开发表论文60余篇,授权发明专利20余项。
引用本文:    
王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
WANG Baoqin, WANG Ben, LENG Yuning, WANG Zhongpeng, LI Huafang, SHENG Hui, LIU Wei, WANG Liguo. Soot Combustion Catalyzed by Transition Metal Doped Tin-based Oxide Solid Solution. Materials Reports, 2022, 36(11): 21030095-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030095  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21030095
1 Zhu J. Journal of Chongqing University of Technology (Natural Science), 2010, 24(12), 118(in Chinese).
朱江. 重庆理工大学学报(自然科学), 2010, 24(12), 118.
2 Zhai B Y, Liu Q, Pan X. Materials Reports, 2011, 25(Z2), 418(in Chinese).
翟步英, 刘奇, 潘雄. 材料导报, 2011, 25(Z2), 418.
3 Wu X D, Weng D, Chen H P, et al. Materials Reports, 2002(6), 28(in Chinese).
吴晓东, 翁端, 陈华鹏, 等. 材料导报, 2002(6), 28.
4 Oi-Uchisawa J, Wang S D, Nanba T, et al. Applied Catalysis B: Environmental, 2003, 44(3), 207.
5 Uner D, Demirkol M K, Dernaika B. Applied Catalysis B: Environmental, 2005, 61(3-4), 334.
6 Wagloehner S, Noski M N, Kureti S. Chemical Engineering Journal, 2015, 259, 492.
7 Venkataswamy P, Jampaiah D, Rao K N, et al. Applied Catalysis A: General, 2014, 488, 1.
8 Castoldi L, Matarrese R, Lietti L, et al. Applied Catalysis B: Environmental, 2009, 90(1), 278.
9 Kimura R, Elangovan S P, Ogura M, et al. The Journal of Physical Chemistry C, 2011, 115(30), 14892.
10 Liu S, Wu X D, Weng D, et al. Journal of Rare Earths, 2015, 33(6), 567.
11 Neyertz C A, Banús E D, Querini E E M. Chemical Engineering Journal, 2014, 248, 394.
12 Oi-Uchisawa J, Obuchi A, Enomoto R, et al. Applied Catalysis B: Environmental, 2001, 32(4), 257.
13 Peng C, Yu D, Wang L, et al. Scientia Sinica Chimica, 2021, 51(8), 1029(in Chinese).
彭超, 于迪, 王斓懿, 等. 中国科学:化学, 2021, 51(8), 1029.
14 Wang Y, Lee J Y, Zeng H C. Chemistry of Materials, 2005, 17(15), 3899.
15 Li Z H, Li W L, Kong F H, et al. Chemical Industry and Engineering Progress, 2010, 29(12), 2324(in Chinese).
李振昊, 李文乐, 孔繁华,等. 化工进展, 2010, 29(12), 2324.
16 Batzill M, Diebold U. Progress in Surface Science, 2005, 79(2-4), 47.
17 Croft G, Fuller M J. Nature, 1977, 269, 585.
18 Shimizu K, Katagiri M, Satokawa S, et al. Applied Catalysis B: Environmental, 2011, 108-109, 39.
19 Inomata Y, Albrecht K, Yamanmoto K. ACS Catalysis,2018,8(1),451.
20 Liu Z, Feng X, Zhou Z Z, et al. Applied Surface Science, 2018, 428, 526.
21 Bai X, Chai S, Liu C, et al. ChemCatChem, 2017, 9(16), 3226
22 Xu X, Sun X, Han H, et al. Applied Surface Science, 2015, 355, 1254.
23 Lan F, Wang X, Xu X L, et al. Reaction Kinetics Mechanism and Catalysis, 2012, 106(1), 113.
24 Sun Q, Xu X L, Peng H G, et al. Chinese Journal of Catalysis, 2016, 37(8), 1293.
25 Peng Y, Peng H, Liu W M, et al. RSC Advances, 2015, 5(53), 42789.
26 Rao C, Liu R, Feng X H, et al. Chinese Journal of Catalysis, 2018, 39(10), 1683.
27 Sun X M, Chen X, Deng Z X, et al. Materials Chemistry and Physics, 2003, 78(1), 99.
28 Zhu H J, Xu J, Yi C, et al. Journal of Colloid & Interface Science, 2017, 508, 1.
29 Fujihara S, Maeda T, Ohgi H, et al. Langmuir, 2004, 20(15), 6476.
30 Lin G M, Yang H, Zhou Q F, et al. Chinese Journal of Sensors and Actuators, 1996, 9(1), 50(in Chinese).
林光明, 杨华, 周岐发, 等. 传感技术学报, 1996, 9(1), 50.
31 Wu H L, Guo J, Yin X G, et al. Materials Reports B: Research Papers, 2016, 30(4), 72(in Chinese).
邬红龙,郭军,尹晓刚,等. 材料导报:研究篇, 2016, 30(4), 72.
32 Rao C, Shen J, Wang F, et al. Applied Surface Science,2018,435,406.
33 Yu K N, Xiong Y, Liu Y, et al. Physical Review B, 1997, 55(4), 2666.
34 Rao C, Liu R, Feng X H, et al. Chinese Journal of Catalysis, 2018, 39(10), 1683.
35 Zhao J, Zhao J G, Gao S, et al. Chinese Journal of Light Scattering, 2004, 16(3), 234(in Chinese).
赵杰, 赵经贵, 高山,等. 光散射学报, 2004, 16(3), 234.
36 Li X F, Sun Y Q, Wang Z P, et al. Environmental Science, 2017, 38(4), 1348(in Chinese).
李曦峰, 孙宇琦, 王仲鹏,等. 环境科学, 2017, 38(4), 1348.
37 Oviedo J, Gillan M J. Surface Science, 2001, 490(3), 221.
38 Sasikala R, Gupta N M, Kulshrestha S K. Catalysis Letters, 2001, 71(1-2), 69.
39 Wang X, Xiao L H, Peng H G, et al. Journal of Material Chemistry A, 2014, 2, 5616.
40 Shen J, Feng X H, Liu R, et al. Chinese Journal of Catalysis, 2019, 40(6), 905.
41 Li Y R, Peng H, Xu X L, et al. RSC Advances, 2015, 5(33), 25755.
42 Li Z Q, Meng M, Zha Y Q, et al. Applied Catalysis B: Environmental, 2012, 121(23), 65.
[1] 马殿普, 普友福, 陈高芳, 覃德清, 张家涛. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(Z1): 151-155.
[2] 陈恩丽, 段俊新, 谢智中. N-杂环卡宾活化二氧化碳的研究进展[J]. 材料导报, 2021, 35(9): 9196-9209.
[3] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[4] 万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰. Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算[J]. 材料导报, 2021, 35(2): 2139-2144.
[5] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[6] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[7] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[8] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[9] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[10] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[11] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[12] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[13] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed