Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23051-23056    https://doi.org/10.11896/cldb.20070096
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
锰基氧化物上甲苯催化氧化的研究进展
殷珂1,2,3, 陈瑞洋1,2,3, 刘志明1,2,3
1 北京化工大学化工资源有效利用国家重点实验室,北京 100029
2 北京化工大学化学工程学院,北京 100029
3 北京化工大学能源环境催化北京市重点实验室,北京 100029
Catalytic Removal of Toluene Over Manganese-Based Oxide Catalysts
YIN Ke1,2,3, CHEN Ruiyang1,2,3, LIU Zhiming1,2,3
1 State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029
2 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3 Beijing Key Laboratory of Energy and Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 3787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 挥发性有机化合物(VOCs)的控制日益引起学术界和产业界的高度关注,催化燃烧法由于具有高效、低温和低成本的优势,被认为是目前降解VOCs最有前景的方法之一。甲苯作为VOCs中一种典型的污染物,其催化燃烧对VOCs的控制具有重要意义。催化燃烧法中催化剂的选择至关重要,锰氧化物(MnOx)由于具有良好的氧化还原性能、水热稳定性以及价格低廉等优点,国内外研究者对锰基氧化物上甲苯催化氧化进行了深入研究。
目前改性锰基氧化物催化剂的种类主要有多相锰氧化物、过渡金属掺杂锰氧化物和负载型锰氧化物。多相锰氧化物(如α@β-MnO2)不仅使α-MnO2和β-MnO2在催化氧化甲苯的过程中发挥各自的优势,而且利用相界面产生更多氧空穴,促进氧流动,从而提高催化效率。过渡金属掺杂锰氧化物有利于不同金属间的电子转移和催化剂表面的氧流动,提高催化剂的氧化还原能力。负载型锰氧化物通过产生金属与载体相互作用来改善锰氧化物的催化性能。除此之外,通过调控MnOx形貌、对锰基氧化物进行酸处理等会影响催化剂的比表面积、活性氧种类和氧化还原能力等,从而改善催化剂的催化活性。甲苯在锰基氧化物催化剂上的氧化可遵循Mars-van Krevelen (MVK)机理与Langmuir-Hinshelwood(L-H)机理,中间产物均为吸附在催化剂表面带芳环的中间体。
本文以甲苯的催化氧化为目标反应,综述了锰基氧化物催化剂种类、影响因素及甲苯催化氧化机理,并对锰氧化物的发展趋势进行了展望,以期为设计对甲苯催化氧化具有良好性能的催化剂提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷珂
陈瑞洋
刘志明
关键词:  锰基氧化物  甲苯  催化氧化    
Abstract: The control of volatile organic compounds (VOCs) has attracted attention in both academic and industrial communities. Catalytic oxidation is considered to be one of the most promising methods for the removal of VOCs due to the high efficiency, low reaction temperature and low cost. The catalytic removal of toluene, which is one of the typical VOCs, is very important for the control of VOCs. Catalyst plays a key role for the catalytic oxidation of toluene. Considering the good redox property, high hydrothermal stability and the low cost of MnOx, many researchers have conducted intensive study on the catalytic oxidation of toluene over MnOx-based catalysts.
MnOx-based catalysts can be classified into heterogeneous MnOx, transition metal-doped MnOx and supported MnOx. For the heterogeneous MnOx, such as α@β-MnO2, the advantages of different MnOx phase can be made full use of. In addition, more oxygen vacancies are generated in the phase interface, promoting the oxygen flow and thereby improving the reaction efficiency. Introduction of transition metals to MnOx would contribute to the electron transfer between metals and enhance the oxygen mobility of the catalyst, thus enhancing the redox property. In the case of supported MnOx the strong metal-support interaction is beneficial for the improvement of the catalytic performance. Morphology control and the acid treatment of MnOx-based catalysts can also lead to improved activity by regulating the specific surface area, the active oxygen species and the redox ability of the catalysts. The oxidation of toluene on the MnOx-based catalyst follows Mars-van Krevelen (MVK) or Langmuir-Hinshelwood(L-H) mechanism. For both mechanisms the intermediate with an aromatic ring is formed.
In this review, the types of MnOx catalysts, influencing factors and mechanism of the catalytic oxidation of toluene over manganese-based oxide have been summarized and discussed. And the perspective on MnOx-based catalysts for the catalytic oxidation of toluene has been proposed.
Key words:  manganese-based oxide    toluene    catalytic oxidation
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  X701  
基金资助: 国家重点研发计划(2017YFC0210700)
通讯作者:  liuzm@mail.buct.edu.cn   
作者简介:  殷珂,2018年6月毕业于山东科技大学,获得工学学士学位。现为北京化工大学硕士研究生,在刘志明教授的指导下进行研究。目前主要进行苯系物催化氧化的研究。
刘志明,教授,博士研究生导师。2004年于清华大学环境科学与工程系获博士学位,2004—2008年先后在韩国科学技术院(KAIST)、加拿大阿尔伯塔(Alberta)大学和美国克莱姆森(Clemson)大学从事博士后研究工作,2008年9月作为高层次引进人才进入北京化工大学工作,主要从事大气污染控制与环境催化的研究。2010年获霍英东教育基金会第十二届高等院校青年教师奖(应用研究),2013年入选教育部新世纪优秀人才支持计划。
引用本文:    
殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
YIN Ke, CHEN Ruiyang, LIU Zhiming. Catalytic Removal of Toluene Over Manganese-Based Oxide Catalysts. Materials Reports, 2020, 34(23): 23051-23056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070096  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23051
1 Sihaib Z, Puleo F, Garcia-Vargas J M, et al. Applied Catalysis B-Environmental,2017,209,689.
2 Atkinson R. Atmospheric Environment,2000,34(12-14),2063.
3 Li L, Liu S Q, Liu J X. Journal of Hazardous Materials,2011,192(2),683.
4 Kujawa J, Cerneaux S, Kujawski W. Journal of Membrane Science,2015,474,11.
5 Malhautier L, Quijano G, Avezac M, et al. Chemical Engineering Journal,2014,247,199.
6 Dinh M T N, Giraudon J M, Vandenbroucke A M, et al. Applied Catalysis B-Environmental,2015,172-173,65.
7 Mo J H, Zhang Y P, Xu Q J, et al. Atmospheric Environment,2009,43(14),2229.
8 Mao M Y, Li Y Z, Hou J T, et al. Applied Catalysis B-Environmental,2015,174-175,496.
9 Li J Q, Tang W X, Liu G, et al. Catalysis Today,2016,278,203.
10 Chen C Y, Wu Q M, Chen F, et al. Journal of Materials Chemistry A,2015,3(10),5556.
11 Huang H B, Leung D Y C. ACS Catalysis,2011,1(4),348.
12 Huang N, Qu Z P, Dong C, et al. Applied Catalysis A-General,2018,560,195.
13 Xie Y J, Yu Y Y, Gong X Q, et al. Crystengcomm,2015,17(15),3005.
14 Hu Z, Qiu S, You Y, et al. Applied Catalysis B-Environmental,2018,225,110.
15 Li G Q, Zhang C H, Wang Z, et al. Applied Catalysis A-General,2018,550,67.
16 Lahousse C, Bernier A, Grange P, et al. Journal of Catalysis,1998,178(1),214.
17 Xu H M, Yan N Q, Qu Z, et al. Environmental Science & Technology,2017,51,8879.
18 Du Y C, Meng Q, Wang J S, et al. Microporous and Mesoporous Mate-rials,2012,162(162),199.
19 Si W Z, Wang Y, Peng Y, et al. Chemical Communications,2015,51(81),14977.
20 Guo F, Xu J Q, Chu W. Catalysis Today,2015,256,124.
21 Kim S C, Shim W G. Applied Catalysis B-Environmental,2018,98(3-4),180.
22 Piumetti M, Fino D, Russo N. Applied Catalysis B-Environmental,2015,163,277.
23 Wang L, Zhang C H, Huang H, et al. Reaction Kinetics Mechanisms and Catalysis,2016,118(2),605.
24 Nguyen D M T, Nguyenb C C, Truong Vua T L, et al. Applied Catalysis A-General,2020,595,117473.
25 Zhou G L, Lan H, Gao T T, et al. Chemical Engineering Journal,2014,246,53.
26 Wang F, Yang G Y, Zhang W, et al. Chemical Communications,2013,34(33),1172.
27 Flavia G Durán, Barbero B P, Luis E Cadús, et al. Applied Catalysis B-Environmental,2009,92(1-2),194.
28 Saqer S M, Kondarides D I, Verykios X E. Applied Catalysis B-Environmental,2011,103(3-4),275.
29 Qu Z P, Gao K, Fu Q, et al. Catalysis Communications,2014,52,31.
30 Wang Y, Zhang L X, Guo L M. ACS Applied Nano Materials,2018,1(3),1066.
31 Behar S, Gonzalez P, Agulhon P, et al. Catalysis Today,2012,189(1),35.
32 Zhang C H, Guo Y L, Lu G, et al. Applied Catalysis B-Environmental,2014,148-149,490.
33 Liu Z X, Li W B. Acta Physico-Chimica Sinica,2016,32,1795.
34 Wang Y, Yang D Y, Li S Z, et al. Chemical Engineering Journal,2019,357,258.
35 Li W B, Chu W B, Zhuang M, et al. Catalysis Today,2004,93,205.
36 Montini T, Melchionnal M, Monai M, et al. Chemical Reviews,2016,116,5987.
37 Delimaris D, Ioannides T. Applied Catalysis B-Environmental,2018,84(1),303.
38 Du J P, Qu Z P, Dong C, et al. Applied Surface Science,2018,433,1025.
39 Dong Y L, Zhao J Y, Zhang J Y. et al. Chemical Engineering Journal,2020,388,124244.
40 Cui W H, Li S D, Wang D D, et al. Catalysis Communications,2019,119,86.
41 He C, Jiang Z Y, Ma M D, et al. ACS Catalysis,2018,8,4213.
42 Jung S C, Park Y K, Jung H Y, et al. Research on Chemical Interme-diates,2016,42(1),185.
43 Li X, Wang L J, Xia Q B, et al. Catalysis Communications,2011,14(1),15.
44 Yang L Y, Yang X, Lin S Y, et al. Catalysis Science & Technology,2015,5(3),1495.
45 Sultana A, Sasaki M, Hamada H. Catalysis Today,2012,185(1),284.
46 Shen B Y, Wang Y Y, Wang F M, et al. Chemical Engineering Journal,2014,236,171.
47 Hou Z Y, Feng J, Lina T, et al. Applied Surface Science,2018,434,82.
48 Lai X X, Feng J, Zhou X Y, et al. Acta Physico-Chimica Sinica,2020,36(8),1905047.
49 López-Fonseca R, Steltenpohl P, González-Velasco J R, et al. Studies in Surface Science Catalysis,2000,130,893.
50 Gallastegi-Villa M, Romero-Sáez M, Aranzabal A, et al. Catalysis Today,2013,213,192.
51 Li J R, Zuo S F, Qi C Z. Catalysis Communications,2017,323,160.
52 Romero-Sáez M, Divakar D, Aranzabal A, et al. Applied Catalysis B-Environmental,2016,180,210.
53 Huang H, Zhang C H, Wang L, et al. Catalysis Science & Technology,2016,6(12),4260.
54 Yang F, Gao S Y, Ding Y, et al. New Journal of Chemistry,2019,43(48),19020.
55 Liao Y N, Zhang X, Niu W H, et al. Environmental Engineering,2018,36(1),62(in Chinese).
廖银念,张璇,牛文浩,等.环境工程,2018,36(1),62.
56 Yang W H, Su Z A, Xu Z H, et al. Applied Catalysis B-Environmental,2020,260,118150.
57 Uematsu T, Miyamoto Y, Ogasawara Y, et al. Catalysis Science & Technology,2016,6(1),223.
58 Wang F, Dai H X, Deng J, et al. Environmental Science & Technology,2012,46(7),4034.
59 Shi F, Wang F J, Dai H X, et al. Applied Catalysis A-General,2012,433-434,206.
60 Ha T L, Kim H J, Shin J, et al. Chemical Communications,2011,47(32),9176.
61 Fu X B, Feng J Y, Wang H, et al. Catalysis Communications,2009,10(14),1844.
62 Liao Y N, Zhang X, Peng R, et al. Applied Surface Science,2017,405,20.
63 Li J Y, Qu Z P, Qin Y, et al. Applied Surface Science,2016,385,234.
64 Yang X Q, Yu X L, Lin M Y, et al. Catalysis Today,2019,327,254.
65 Si W Z, Wang Y, Zhao S, et al. Environmental Science & Technology,2016,50(8),4572.
66 Li B, Yang Q L, Peng Y, et al. Chemical Engineering Journal,2019,366,92.
67 He C H, Li P, Cheng J, et al. Water Air Soil Pollut,2010,209(1),365.
68 Chen J, Chen X, Xu W, et al. Chemical Engineering Journal,2017,330,281.
69 Zhang Z X, Jiang Z, Shangguan W F. Catalysis Today,2016,264,270.
70 Sun H, Liu Z G, Chen S, et al. Chemical Engineering Journal,2015,270,58.
71 Qin Y, Wang H, Dong C, et al. Journal of Catalysis,2019,380,21.
[1] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[2] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[3] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[4] 李石, 邢亚彬, 赵东风, 宋坤莉, 杜改平, 王永强, 顾莹莹. 石化企业剩余活性污泥基活性炭制备及吸附甲苯气体的研究[J]. 材料导报, 2020, 34(16): 16066-16071.
[5] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[6] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[9] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[10] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[11] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[12] 姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
[13] 朱亚明, 赵雪飞, 程俊霞, 刘巍, 吕君, 王莹. 中温沥青中甲苯可溶组分的热解特性及热转化产物的性质*[J]. 《材料导报》期刊社, 2017, 31(12): 109-114.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed