Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2167-2173    https://doi.org/10.11896/cldb.17120108
  无机非金属及其复合材料 |
锰基多元氧化物的NO催化氧化研究进展
施露1,张杰1,陈蓉2,沈美庆3,单斌1
1 华中科技大学材料科学与工程学院,武汉 430074
2 华中科技大学机械科学与工程学院,武汉 430074
3 天津大学化工学院,天津 300072
Research Progress on the NO Catalytic Oxidation over Manganese Based Multicomponent Oxides
SHI Lu1, ZHANG Jie1, CHEN Rong2, SHEN Meiqing3, SHAN Bin1
1 School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074
2 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
3 School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072
下载:  全 文 ( PDF ) ( 11542KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮氧化物(NOx)是机动车尾气的主要排放污染物,对人体健康和大气环境都会造成巨大的危害。随着机动车尾气排放标准日益严格,发展更加高效的机动车尾气催化技术受到了人们的广泛关注。在机动车尾气处理技术中,NO被催化氧化形成NO2是其中的重要步骤。现在商用的NO氧化催化剂是Pt/Al2O3,然而,Pt/Al2O3上的NO被催化氧化活性成分是贵金属Pt,高昂的成本和较差的水热稳定性限制了其广泛应用。因此,寻找价格低廉、水热稳定性良好,且具有优异NO催化氧化活性的催化剂对汽车尾气后处理技术具有重要意义。
学者研究了很多成本低廉的过渡金属氧化物催化剂(以MnOx和CoOx为代表)用作NO催化氧化,虽然部分过渡金属氧化物具有优异的NO催化氧化性能,但是其水热稳定性并不理想,限制了它们的实际应用。研究人员发现,以钙钛矿型LaMnO3和莫来石型SmMn2O5为代表的锰基多元氧化物结构稳定、成本低廉,并且在NO的催化氧化方面表现出优异的性能,之后,这类催化剂越来越引起人们的广泛关注。
虽然纯相的锰基多元氧化物有着与商用Pt/Al2O3相媲美的NO催化氧化活性,但为了满足日益严格的机动车尾气排放要求,研究人员更进一步探索了不同的方法来提高锰基多元氧化物的催化活性,包括非化学计量比合成、负载氧化物复合以及异质元素掺杂等多种方法。这些方法在保持锰基多元氧化物晶体结构的同时,改变其表面或者界面处局域的化学环境,可以明显提高其NO催化氧化性能。研究人员不断优化锰基多元氧化物的NO催化活性,并十分关注其催化机理的研究。结合实验上的原位漫反射傅里叶变换红外光谱技术、第一性原理计算模拟以及微反应动力学分析,可以更加深入地认识锰基多元氧化物的NO催化氧化机理,以从实验上指导优化锰基多元氧化物催化剂。
本文将主要从以下几个方面介绍锰基多元氧化物在NO催化氧化方面的研究进展:(1)常用NO催化氧化剂的发展;(2)锰基多元氧化物的常用合成方法;(3)NO催化氧化的活性改进;(4)NO催化氧化机理的研究。最后阐述了锰基多元氧化物应用在NO催化氧化领域面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施露
张杰
陈蓉
沈美庆
单斌
关键词:  锰基多元氧化物  一氧化氮催化氧化  催化剂改性    
Abstract: Nitrogen oxides (NOx) are the major pollutant from vehicle exhaust, and they are very harmful to human health and atmospheric environment. With the increasingly strict vehicle exhaust emission standards, the development of more efficient vehicle exhaust catalytic technology has been widely concerned. In vehicle exhaust treatment technology, NO catalytic oxidation to NO2 is an important step, and Pt/Al2O3 is now a commercial used catalyst for NO oxidation. However, as precious metal, Pt is the active ingredient on Pt/Al2O3 for NO catalytic oxidation, its widespread application is limited by its high cost and poor hydrothermal stability. It is of great significance to find catalysts with low price, good hydrothermal stability and excellent NO catalytic oxidation activity in automobile tail gas reprocessing technology.
Due to the low price, many transition metal oxide catalysts (especially for MnOx and CoOx) have been studied for NO catalytic oxidation. Although some transition metal oxides have excellent NO catalytic oxidation performance, their hydrothermal stability is not very ideal under actual operating conditions, which limits their practical application. After that, researchers found that the manganese based multicomponent oxides (MBMO), such as perovskite type LaMnO3 and mullite type SmMn2O5, have stable structure, low cost and excellent performance in the catalytic oxidation of NO, attracting more and more attention.
The pure phase MBMO showes comparable NO catalytic oxidation activity to commercial Pt/Al2O3, and the researchers further explored diffe-rent methods to improve the catalytic activity of MBMO, including non-stoichiometric ratio synthesis, loading oxide compounds, and doping by heterogeneous elements. These methods can improve the NO catalytic oxidation performance of MBMO while maintaining the original crystal structure and changing the local environment of its surface or interface. While researchers optimized the catalytic activity of NO oxidation, they also paid great attention to the catalytic mechanisms. Combined with infrared spectrum of in situ diffuse reflection Fourier transform infrared spectrometer (in situ DRIFTs), first-principles calculation and micro kinetic analysis, it can have a deeper understanding of the reaction mechanisms, and in turn to guide the optimization of MBMO catalyst in the experiment.
This paper mainly introduces the research progress of MBMO on NO catalytic oxidation from the following aspects: (1) development of NO catalytic oxidants; (2) synthesis methods of MBMO; (3) improvement of the catalytic oxidation activity of NO on MBMO; (4) the reaction mec-hanisms of NO catalytic oxidation on MBMO. Finally, the challenges and future prospects of the application of MBMO in the field of NO catalysis are described.
Key words:  manganese based multicomponent oxides    nitric oxide catalytic oxidation    catalyst modification
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  X511  
基金资助: 国家自然科学基金(51572097;51575217)
作者简介:  施露,2014毕业于华中科技大学材料科学与工程学院,获得学士学位。现为华中科技大学材料科学与工程学院博士研究生,在单斌教授的指导下进行研究。目前主要研究柴油车尾气催化技术中的反应机理。
单斌,华中科技大学材料学院教授,博士生导师,兼任美国德州大学达拉斯分校材料系客座教授,中科院宁波材料所客座研究员,材料科学与技术系主任。2001年7月本科毕业于清华大学物理系,2006年7月在斯坦福大学取得应用物理系和电子工程系双博士学位,2006—2010年担任硅谷创业公司计算纳米部门资深科学家。2010年回国以后获得教育部新世纪优秀人才支持计划,湖北省杰出青年基金,中国稀土学会催化专业委员会委员,美国材料学会、电化学学会会员。在Science, Angewante Chemie, Physical Review Letters等国际权威杂志发表论文100余篇。单斌教授长期担任Nano Letters, Physical Review Letters, Physical Review B, Journal of Catalysis, Journal of Chemical Physics Letters等国际权威期刊的审稿人,中国NSFC通讯评审专家。
引用本文:    
施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
SHI Lu, ZHANG Jie, CHEN Rong, SHEN Meiqing, SHAN Bin. Research Progress on the NO Catalytic Oxidation over Manganese Based Multicomponent Oxides. Materials Reports, 2019, 33(13): 2167-2173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120108  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2167
1 中国机动车环境管理年报(2017). 北京: 中国环境保护部, 2017.2 Xie Z, Song Y, Liang J, et al.Materials Review A: Review Papers, 2017, 31(6),38 (in Chinese).解智博, 宋艳军, 梁金生, 等. 材料导报:综述篇, 2017, 31(6),38.3 Mauzerall D, Sultan B, Kim N, et al.Atmospheric Environment, 2005, 39 (16), 2851.4 Liu C. The pollution characteristics of ozone and its related relationship with the precursor pollutant in Tianjin. Ph.D. Thesis, Nankai University, China, 2007 (in Chinese).刘彩霞. 天津市臭氧的污染特征及其与前驱污染物的相关关系. 博士学位论文,南开大学, 2007.5 裴金科. 汽车排放污染及控制. 北京人民交通出版社, 2005.6 Zhang R, Li K, Ning P, et al.Materials Review A: Review Papers, 2015, 29(8),123 (in Chinese).张瑞元, 李凯, 宁平, 等.材料导报:综述篇, 2015, 29(8),123.7 刘巽俊. 内燃机排放与控制. 机械工业出版社, 2002.8 Casarella M.Urea Dosing Systems and Controls for Light Duty Diesel Applications, presentation at SAE Light-Duty Diesel Emissions Symposium, Ypsilanti, MI, 2011.9 Wang J, Wang Y, Liu S, et al.Science & Technology Reviews, 2012, 30(25), 68 (in Chinese).王建强, 王远, 刘双喜, 等.科技导报, 2012, 30(25),68.10 Wang J, Yang J, Gao J, et al.Science & Technology Reviews, 2011, 29(11), 67 (in Chinese).王建强, 杨建军, 高继东, 等. 科技导报, 2011, 29(11),67.11 Xue E,Seshan K, Ross J R H. Applied Catalysis B: Environmental, 1996, 11(1),65.12 Després J, Elsener M, Koebel M, et al.Applied Catalysis B: Environmental, 2004, 50(2),73.13 Dawody J, Skoglundh M, Fridell E.Journal of Molecular Catalysis A: Chemical, 2004, 209(1-2), 215.14 Abedi A, LuoJ Y, Epling W S. Catalysis Today, 2013, 207,220.15 Auvray X, Olsson L.Applied Catalysis B: Environmental, 2015, 168-169, 342.16 Matam S K, Kondratenko E V, Aguirre M H, et al.Applied Catalysis B: Environmental, 2013, 129, 214.17 Kishi H, Oemry F, Nguyen T Q, et al.Current Applied Physics, 2012, 12, S110.18 Fattah Z, Rezaei M, Biabani-Ravandi A, et al.Process Safety and Environmental Protection, 2014, 92(6),948. 19 Kowalik P, Próchniak W, Konkol M, et al. Applied Catalysis A: General, 2012, 423-424,15.20 Meshkani F, Rezaei M. Catalysis Communications, 2011, 12(11),1046.21 Lu W, Zhao X, Wang H, et al.Chinese Journal of Catalysis, 2000, 21(5), 423 (in Chinese).鲁文质,赵秀阁,王辉,等. 催化学报, 2000, 21(5), 423.22 Zhao B, Ran R, Wu X, et al.Applied Catalysis A: General, 2016, 514, 24.23 Wang Z, Lin F, Jiang S, et al.Fuel, 2016, 166,352.24 Qiu L, Wang Y, Pang D, et al.Catalysts, 2016, 6(1), 9.25 Shang D, Zhong Q, Cai W.Applied Surface Science, 2015, 325, 211.26 Kim C, Qi G, Dahlberg K, et al. Science, 2010, 327(5973),1624.27 Wang W, McCool G, Kapur N, et al.Science, 2012, 337(6096), 832.28 Dhakad M, Rayalu S S, Kumar R, et al.Catalysis Letters, 2008, 121(1-2),137.29 Li Z, Meng M, Li Q, et al.Chemical Engineering Journal, 2010, 164,98.30 Wang P, Cai Y, Lei L, et al.Procedia Engineering, 2011, 16,259.31 Russo N, Fino D, Saracco G, et al.Journal of Catalysis, 2005, 229, 459.32 Vincent H, Audier M, Pignard S, et al.Journal of Solid State Chemistry, 2002, 164(2), 177.33 Spinicci R, Delmastro A, Ronchetti S, et al.Materials Chemistry and Physics, 2002, 78,393.34 Wolcyrz M, Horyn R, Bouree F, et al.Journal of Alloys and Compounds, 2003, 353, 170.35 Alonso J, Martinez-Lope M, Casais M, et al.Journal of Materials Chemistry, 1997, 7(10),2139.36 Dezanneau G, Sin A, Roussel H, et al.Journal of Solid State Chemistry, 2003, 173(1),216.37 Chen J, Shen M, Wang X, et al.Applied Catalysis B: Environmental, 2013, 134-135,251.38 Cimino S, Colonna S, De Rossi S, et al.Journal of Catalysis, 2002, 205(2),309.39 Chagas C, Toniolo S, Magalh es R, et al.International Journal of Hydrogen Energy, 2012, 37(6),5022.40 You R, Zhang Y, Liu D, et al.Chemical Engineering Journal, 2015, 260, 357.41 Nguyen S, Szabo V, Trong On D, et al.Microporous and Mesoporous Materials, 2002, 54,54.42 Xiao P, Hong J, Wang T, et al.Catalysis Letters, 2013, 143(9),887.43 Asada T, Kusaba K, Einaga H, et al.Bulletin of the Chemical Society of Japan, 2015, 88(8),1036.44 Einaga H, Yoshida W, Lee C, et al.Catalysis Letters, 2016, 146(12),2495.45 Shen M, Zhao Z, Chen J, et al.Journal of Rare Earths, 2013, 31(2),119.46 Yoon D, Lim E, Kim Y, et al.Journal of Catalysis, 2014, 319,182.47 Peng Y, Si W, Li J, et al.Catalysis Science & Technology, 2015, 5(4),2478.48 Onrubia J, Pereda-Ayo B, De-La-Torre U, et al.Applied Catalysis B: Environmental, 2017, 213,198.49 Dong Y, Xian H, Lv J, et al.Materials Chemistry and Physics, 2014, 143(2),578.50 Wang J, Su Y, Wang X, et al.Catalysis Communications, 2012, 25,106.51 Feng Z, Wang J, Liu X, et al. Catalysis Science & Technology, 2016, 6(14),5580.52 Bhatia D, McCabe R, Harold M, et al.Journal of Catalysis, 2009, 266,106.53 Olsson L, Westerberg B, Persson H, et al.Journal of Physical Chemistry B, 1999, 103(47),10433.54 Doornkamp C, Ponec V.Journal of Molecular Catalysis A: Chemical, 2000, 162,19.55 Chen Z, Liu X, Cho K, et al.ACS Catalysis, 2015, 5, 4913.56 Bottin F, Finocchi F, Noguera C.Physical Review B, 2003, 68,035418.57 Penninger M, Kim C, Thompson L, et al.The Journal of Physical Chemistry C, 2015, 119(35),20488.58 Liu X, Chen Z, Wen Y, et al.Catalysis Science & Technology, 2014, 4(10),3687.59 Yang J, Zhang J, Liu X, et al. Journal of Catalysis, 2018, 359,122.60 Liu J, Yu M, Wang X, et al. Journal of Materials Chemistry A, 2017, 5 (39), 20922.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[3] 王学谦, 谢怡冰, 宁平, 王郎郎, 林奕龙, 黄红旗. 改性吸附剂脱除工业废气中AsH3研究进展[J]. 材料导报, 2018, 32(23): 4089-4099.
[4] 赫连一哲, 马晓宇, 崔素萍, 万业强. 原位漫反射红外光谱研究NO和NH3在MnOx/TiO2催化材料上的吸附行为及反应机理[J]. 材料导报, 2018, 32(22): 3973-3978.
[5] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[6] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[7] 王馨博, 栾志强, 李凯, 栗丽, 唐腾飞. 气凝胶在气体吸附净化中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2214-2222.
[8] 周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英. 金属有机骨架材料在气体吸附与分离中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 112-121.
[9] 刘娜, 孙鑫, 宁平, 李凯, 孙丽娜. 新型矿浆材料脱硫现状及研究进展[J]. 《材料导报》期刊社, 2017, 31(17): 106-111.
[10] 马丽, 黄艳凤. 磁性金属有机骨架复合材料Fe3O4-COOH@MIL-101用于
燃料油中含硫化合物的脱除*
[J]. 《材料导报》期刊社, 2017, 31(14): 31-34.
[11] 孟刘邦, 房晶瑞, 管学茂. 活性组分掺杂对低温锰基催化剂脱硝性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 35-39.
[12] 解智博, 宋艳军, 梁金生, 薛刚, 孟军平, 孙剑锋. 锰基催化剂低温选择催化还原处理NOx的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 38-43.
[13] 姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
[14] 王红妍, 王宝冬, 李俊华, 孙琦. 燃煤烟气中单质汞的催化氧化技术研[J]. 《材料导报》期刊社, 2017, 31(7): 114-120.
[15] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed