Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 35-39    https://doi.org/10.11896/j.issn.1005-023X.2017.014.008
  材料研究 |
活性组分掺杂对低温锰基催化剂脱硝性能的影响*
孟刘邦1, 房晶瑞2, 管学茂1
1 河南理工大学材料科学与工程学院, 焦作 454000;
2 中国建筑材料科学研究总院, 绿色建筑材料国家重点实验室, 北京 100024;
Effect of Active Component Doping on the Denitration Properties of Manganese Based Catalyst at Low Temperature
MENG Liubang1, FANG Jingrui2, GUAN Xuemao1
1 School of Material Science and Engineering, Henan Polytechnic University, Jiaozuo 454000;
2 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024;
下载:  全 文 ( PDF ) ( 1858KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Ce和锰盐复配对单组分锰盐活性组分进行掺杂改性,并采用分步共混法制备一系列催化剂。催化剂活性测试显示锰盐复配及Ce的掺杂均能提高锰基催化剂低温活性,且锰盐复配形式的掺杂对催化剂低温活性提高更多。通过对比各催化剂强度状况发现活性组分的掺杂使催化剂的机械强度得到很大提高,而BET结果显示掺杂改性后的锰基催化剂其表面织构得到较大改善。催化剂的XRD结果表明500 ℃焙烧的锰基催化剂活性组分均以无定形态存在。通过对改性后的催化剂进行NH3-TPD和H2-TPR分析,发现相比于Ce对单组分锰盐的掺杂改性,锰盐复配形式的掺杂改性对催化剂表面酸量和氧化还原性能的提高更加显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟刘邦
房晶瑞
管学茂
关键词:  工业废气处理  掺杂  锰基催化剂  低温催化脱硝  选择性催化还原    
Abstract: Single manganese salt active component was modified by doping Ce and mixing manganese salts, and the mixing method with step-by-step was used to prepare a series of catalysts. The activity testing of catalysts presented that mixing manganese salts and doping Ce could both improve the activity of manganese base catalysts at low temperature, and the former′s effect was better than the latter. It was found through comparing that mechanical strength of catalyst was greatly increased by doping of active component. And BET results showed that the surface texture of manganese based catalyst with being doped and modified was greatly improved. XRD results of catalysts indicated that the active components of manganese base catalyst calcined at 500 ℃ existed in the form of amorphous state. Through analyzing NH3-TPD and H2-TPR of modified catalysts, compared to Ce doping into single manganese salt, surface acid amount and redox properties of catalyst was more significantly improved by the doping form of mixing manganese salts.
Key words:  waste gas treatment    dope    manganese based catalyst    low-temperature catalytic denitration    selective catalytic reduction
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  X511  
基金资助: *国家科技支撑计划资助项目(2013BAC13B01)
作者简介:  孟刘邦:男,1990年生,硕士研究生,主要从事绿色建材与大气环保方面研究 E-mail:1171713049@qq.com 管学茂:通讯作者,1965年生,主要研究方向为绿色建筑材料 E-mail: guanxuemao@126.com
引用本文:    
孟刘邦, 房晶瑞, 管学茂. 活性组分掺杂对低温锰基催化剂脱硝性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 35-39.
MENG Liubang, FANG Jingrui, GUAN Xuemao. Effect of Active Component Doping on the Denitration Properties of Manganese Based Catalyst at Low Temperature. Materials Reports, 2017, 31(14): 35-39.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.008  或          http://www.mater-rep.com/CN/Y2017/V31/I14/35
1 Blanco J, Avila P, Suárez S, et al. CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas[J]. Chem Eng J,2004,97(1):1.
2 Zhao Q, Xiang J, Sun L, et al. Adsorption and oxidation of NH3 and NO over sol-gel-derived CuO-CeO2-MnOx/γ-Al2O3 catalysts[J]. Energy Fuels,2009,23(3):1539.
3 Yang Y P, Yang Z P, Xu G, et al. Situation and prospect of consumption for China′s thermal power generation[J]. Proc CSEE,2013,33(23):1(in Chinese).
杨勇平, 杨志平, 徐钢, 等. 中国火力发电能耗状况及展望[J]. 中国电机工程学报,2013, 33(23):1.
4 Bosch H, Janssen F, Formation and control of nitrogen oxides [J]. Catal Today,1988,2:366.
5 Ma H Q, Yao Y, Ma J, et al. Study on MnOx/Ti-PILC for NH3-SCR of NO at low temperature[J]. J Eng Thermophys,2013,34(1):164(in Chinese).
马宏卿,姚燕,马娟,等. MnOx/Ti-PILC低温NH3-SCR脱除NO研究[J]. 工程热物理学报,2013,34(1):164.
6 Sjoerd K W, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3, Ⅱ reactivity of adsorbed NH3 and NO complexes[J]. J Catal,1997,171(1):219.
7 Yan P, Shen K, Zhang Y P, et al. Effect of former hasten body on catalyst of MnOx/TiO2 for low-temperature selective catalytic reduction of nitric oxide[J]. Environ Sci Technol,2012,35(11):56(in Chinese).
颜鹏, 沈凯, 张亚平, 等. 锰前驱体对 MnOx/TiO2催化剂低温选择性催化还原NO2影响[J]. 环境科学与技术,2012,35(11):56.
8 Guo J, Li C T, Lu P, et al. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature[J]. Environ Sci,2011,32(8):2240(in Chinese).
郭静, 李彩亭, 路培, 等. CeO2改性MnOx/Al2O3的低温SCR法脱硝性能及机制研究[J]. 环境科学,2011,32(8):2240.
9 刘福东, 贺泓, 丁云. 用于NH3选择性催化还原NO的铁钛复合氧化物催化剂低温活性改进研究[C]∥ 第六届全国环境催化与环境材料学术会议论文集.成都,2009:427.
10 甄开吉,王国甲,毕颖丽, 等.催化作用基础[M]. 北京:科学出版社,2005:47.
11 Busca G, Larrubia M A, Arrighi L, et al. Catalytic abatement of NOx: Chemical and mechanistic aspects[J]. Catal Today,2005,107:139.
12 Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ,1998,18(1):1.
13 Bagnasco G, Busca G, Galli P, et al. Selective reduction of NO with NH3 on a new iron-vanadyl phosphate catalyst[J]. Appl Catal B: Environ,2000,28(2):135.
14 Forzatti P. Present status and perspectives in de-NOx SCR catalysis[J]. Appl Catal A: Gen,2001,222(1):221.
15 Jin R, Liu Y, Wu Z, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn Ce oxides supported on TiO2 and Al2O3: A comparative study [J]. Chemosphere,2010, 78(9):1160.
16 Wu Z, Tang N, Xiao L, et al. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interface Sci,2010,352(1):143.
17 Lee S M, Park K H, Hong S C. MnOx/CeO2-TiO2 mixed oxide ca-talysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chem Eng J,2012,195:323.
18 Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ,1994,3(2):173.
19 Park T S, Jeong S K, Hong S H, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Ind Eng Chem Res,2001,40(21):4491.
20 Roy S, Viswanath B, Hegde M S, et al. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2 (M= Cr, Mn, Fe, Co, Cu)[J].J Phys Chem C,2008,112(15):6002.
21 Lee S M, Lee H H, Hong S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Appl Catal A: Gen,2014,470:189.
22 Shen B X, Sun X, Yang X Y. Preparation of PILCS with different pillar materials loading Mn-Ce and de-NOx activity[J]. Proc CSEE,2013,33(011):7(in Chinese).
沈伯雄, 孙喜, 杨晓燕. 不同柱撑物负载Mn-Ce层柱黏土制备及脱硝性能[J]. 中国电机工程学报,2013,33(011):7.
23 Park K H, Lee S M, Kim S S, et al. Reversibility of Mn valence state in MnOx/TiO2 catalysts for low-temperature selective catalytic reduction for NO with NH3[J]. Catal Lett,2013,143(3):246.
24 Yang P Y, Tong L H, Zuo S F, et al. Influence of cerium on texture-structure and redox properties of manganese based catalysts[J]. J Chin Soc Rare Earths,2011,29(4):433(in Chinese).
杨卜源, 佟丽华, 左树锋, 等. 添加铈对锰基催化剂的织构-结构及其氧化还原性能的影响[J]. 中国稀土学报,2011,29(4):433.
25 Wan Q, Duan L, He K, et al. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J,2011,170(2):512.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[7] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[10] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[13] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[14] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[15] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed