Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 129-136    https://doi.org/10.11896/j.issn.1005-023X.2017.07.020
  先进结构复合材料 |
碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展
杨平军1,袁剑民1,何莉萍2
1 湖南大学材料科学与工程学院,长沙410082;
2 湖南大学机械与运载工程学院,长沙 410082
Carbon Fibers Surface Modification and Effects on the Interfaces Between Fibers and Resin Matrices: A Review
YANG Pingjun1, YUAN Jianmin1, HE Liping2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082;
2 Institute of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1383KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维具有优异的性能,常用于树脂基体的增强。然而,碳纤维表面具有疏水性和化学惰性,导致其与树脂基体间的界面粘结性较差,因此,有必要对碳纤维进行表面改性。综述了近几年国内外碳纤维表面改性方法的研究进展,以及这些改性方法对碳纤维与树脂基体界面性能的影响,并将这些表面改性方法分为湿化学法改性、干法改性、纳米材料改性三大类,具体的改性方法包括上浆剂改性、等离子体改性、纳米粒子改性等,并对纳米材料改性作了较详细的介绍,希望能为碳纤维表面改性提供一些帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨平军
袁剑民
何莉萍
关键词:  碳纤维  表面改性  界面  纳米材料改性    
Abstract: Carbon fibers (CF) are used as a reinforcement of polymer composites due to excellent performance. However, carbon fibers are hydrophobic and chemical inertness which cause poor interfaces between CF and resin matrices. Thus, it is necessary to carry out the technology which is used to modify the carbon fibers surface. This paper reviews the research development of carbon fibers surface modification at home and abroad in recent years, and these methods play an important role in carbon fibers and resin matrices. Carbon fibers surface modification are classified into chemical modification, dry modification, nanomaterials modification. Specific modification methods are sizing modification, plasma modification, nanoparticles modification and so forth. At the same time, nanomaterials modification is introduced in detail. The article is expected to provide some valuable help for the modification of CF.
Key words:  carbon fibers    surface modification    interface    nanomaterials modification
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  X511  
通讯作者:  袁剑民,男,1978年生,博士,主要从事碳纤维及其复合材料研究E-mail:pangyuan2916@126.com   
作者简介:  杨平军:男,1991年生,硕士研究生,主要从事碳纤维及其复合材料研究
引用本文:    
杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
YANG Pingjun, YUAN Jianmin, HE Liping. Carbon Fibers Surface Modification and Effects on the Interfaces Between Fibers and Resin Matrices: A Review. Materials Reports, 2017, 31(7): 129-136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.020  或          http://www.mater-rep.com/CN/Y2017/V31/I7/129
1 贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
2 Chang S. Review carbon fibers for composites [J]. Mater Sci,2000,35(6):1303.
3 Dvir H, Jopp J, Gottlieb, et al. Estimation of polymer surface interfacial interaction strength by a contact AFM technique[J]. Colloid Interface Sci,2006,304(1):58.
4 Paiva M C, Bernardo C A, Nardin M, et al. Mechanical surface and interfacial characterization of pitch and PAN based carbon fibers[J]. Carbon,2000,38(9):1323.
5 Park S J, Kim B J. Roles of acidic functional groups of carbon fiber surfaces enchancing interfacial adhesion behavior [J]. Mater Sci Eng A,2005,408:269.
6 Drzal LT, Rich M J, Lioyd P F, et al. Adhesion of graphite fibers to epoxy matrices[J]. Role Fiber Surface Treatment,1983, 16(1):1.
7 Li Y, Wen Y F, Yang Y G, et al. Effect of sizing agent containing epoxy resin on properties of PAN-based carbon fiber [J]. Synthetic Fiber Ind,2009,32(2):1(in Chinese).
李阳,温月芳,杨永岗,等.环氧树脂上浆剂对PAN基碳纤维性能的影响[J]. 合成纤维工业,2009,32(2):1.
8 Alain, Laurence R, Rene B J, et al. Liquid phase oxidation kinetics of an ex-cellulose activated carbon cloth by NaClO[J]. Carbon,2012,50(6):2226.
9 Yu J L, Meng L H, Fand P, et al. The oxidation of carbon fibers through K2S2O8/AgNO3 system that preserves fibers tensile strength[J]. Composites Part B,2014,60:261.
10 Zhang G, Sun S H, Yang D Q, et al. The surface an alytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment [J]. Carbon,2008,46(2):196.
11 Ma Q S, Gu Y Z, Li M, et al. Effects of surface treating methods of high strength carbon fibers on interfacial properties of epoxy resin matrix composite[J]. Appl Surf Sci,2016,379:199.
12 Qian X, Wang X F, Yang Q O, et al. Effect of ammonium salt solutions on the surface properties of carbon fibers in eletrochemical anodic oxidation[J]. Appl Surf Sci,2012,259:238.
13 He W H, Wang J L, Li K X, et al. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength[J]. Mater Des,2010,31:4631.
14 Saba J, Magga Y, He D, et al. Continuous electrodeposition of polypyrrole on carbon nanotube-carbon fiber hybrds as protective treatment against nanotube dispersion [J]. Carbon,2013,51:20.
15 Deng C, Jiang J J, Liu F, et al. Effects of electrophoretially depo- sited grapheme oxide coatings on interfacial properties of carbon fiber composite[J]. J Mater Sci,2015,50:5886.
16 Joi J O, Wood G A. Control of the surface structure of graphite fibers for improved composite interfacial properties[J]. Surf Modification Technol,1998,15(3) 405.
17 Hung K B, Li J, Fan Q, et al. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites[J]. Composites Part A,2008,39(7):1133.
18 Zhang F S, Wu Y, et al. Diacetone acrylamide in electric polymerization on the surface of the carbon fiber research[J]. J Beijing University of Aeronautics and Astronautics,1998,24(4):129(in Chinese).
张福盛, 吴瑜, 庄严, 等.双丙酮丙烯酰胺在碳纤维表面的电聚合研究[J].北京航空航天大学学报,1998,24(4):129.
19 Inoue K, Minami H. Sizing agents for carbon fibers [J]. Carbon,1990,28(5):1.
20 Ezjile H B, Sharpd, Villalba M M, et al. Laser anodised carbon fiber: Coupled activation and pattering of sensor substrates [J]. J Phys Chem Solids,2008,69(11):2932.
21 Ajit S, Chris B, Saunder S, Vince J L, et al. Electron proccessing of carbon fiber reinforced advanced composites: A status report [J]. Am Chem Soc,1996,6(20):15.
22 Xu H B, et al. A high efficient method for introducing reactive amines onto carbon fiber surfaces using hexachlorocyclophosphazene as a new coupling agent[J]. Appl Surf Sci,2014,320(30):43.
23 Zhang R L, Liu Y, et al. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial on shear strength of its composites[J]. Appl Surf Sci,2013,287:423.
24 Liu Y, Zhang X, Song C C, et al. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropropylene composites [J]. Mater Des,2015,88:810.
25 Peng J, Zhang J. Application of plasma technologies in carbon fiber-reinforced polymer composites [J].Mater Rev, 1999, 13(2):48 (in Chinese).
彭静, 张军.等离子体技术在CF/树脂基复合材料中的应用[J].材料导报, 1999,13(2):48.
26 Vautard F, Fioux P. Use of plasma polymerizationt to improve adhesion strength in carbon fiber composites cured by electron beam[J]. Am Chem Soc,2013(6):1662.
27 Sharma M, Bijwe J, Edith M, et al. Strengthening of CF/PEEK interface to improve the tribological performance in low amplitude oscillating wear [J]. Wear,2013,301:735.
28 Lee H, Ohsawa I, Takahashj J, et al. Effect plasma surface treatment of recycled carbon fiber on carbon reinforced plastics (CFRP) interfacial properties[J]. Appl Surf Sci,2015,328:241.
29 Liu Z, Tang C, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin[J]. RSC Adv,2014,4(51):26881.
30 Deng H, Yang J H. Development and application of polymer radiation grafting[J]. Radiation Res Radiation Technol,1998,16(2):65(in Chinese).
邓海, 杨济活.高聚物辐射接枝的发展与应用[J]. 辐射研究与辐射工艺报,1998,16(2):65.
31 Dilsiz N, Erincn K, et al. Surface energy and mechanical properties of plasma modified carbon fibers [J]. Carbon,1995,33(6):853 .
32 Zhao F, et al. Uniform modification of carbon fibers in high density fabric by γ ray irradiation grafting [J]. Mater Lett,2011,65:3351.
33 Evoram C, Araujo J R, Ferrreira H M, et al. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation [J].Appl Surf Sci,2015,335:78.
34 Li J Q, Huang Y D, Fu S Y, et al. Study on the surface perfor- mance of carbon fibers irradiated by gray under different irradiation dose [J]. Appl Surf Sci,2010,256:2000.
35 Wang R, Yang H, Wang J L, et al. The electromagnetic interfe- rence shielding of silicone rubber filled with nickel coated carbon fiber[J]. Polym Test,2014,38:53.
36 Kim B J, Choiw K, Umm K, et al. Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers [J].Surf Coat Technol,2011,205:3416.
37 Tsai J S. Tension effects on the properties of oxidized polyacrylonitrile and carbon fibers during continuous oxidation [J].Polym Eng Sci,1995,35(16):1313.
38 Fuk G, Uedas S, Nagumo M, et al. Air qxidation and anodization of pitch based carbon fibers [J]. Carbon,1991,37(7):1081.
39 He F, Wang R E. Gas phase oxidation of carbon fiber surface treatment [J]. J Compos Mater,1988, 5(1):58(in Chinese).
贺福, 王润娥.用气相氧化法对碳纤维进行表面处理[J].复合材料学报, 1988, 5(1):58.
40 Gosselink R W, Rvan D B, Xia W, et al. Gas phase oxidation as a tool to introduce oxygen containing grou ps on metal loaded carbon nanofibers[J]. Carbon,2012,50:4424.
41 Galanu, Lin Y, Gregory J, et al. Effect of Zn-ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers[J]. Compos Sci Technol,2011,71:946.
42 Lu J H, Guo K B, et al. In situ synthesis silicon nitride nanowires in carbon fiber felts and their effect on the mechanical properties of carbon/carbon composites [J].Mater Des,2016,99:389.
43 Shah A, Ding A, Wang Y H, et al. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites [J]. Carbon,2016,96:987.
44 Wang S K, Haldane D, Gallagher P, et al.Heterogeneously structured conductive carbon fiber composites by using multi-scale silver particles[J]. Composites Part B,2014,61:172.
45 Kim K J, Kim J, Yu W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258.
46 Fan W X, Wang Y X, Wang C G, et al. High efficient preparation of carbon nanotube grafted carbon fibers with the improved tensile strength [J]. Appl Surf Sci,2016,363:539.
47 Li Y X, Li Y B, et al. Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiami[J]. Compos Sci Technol,2013,85:36.
48 Kamae T, Drzal L T. Fiber/epoxy composites property enhancement through incorporation of carbon nanotubes at the fiber matrix interphase PartⅠ: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion [J]. Composites Part A,2012,43:1569.
49 Wang C, Li Y B, Tong L Y, et al. The role of grafting and surface wettability in interfacial of carbon nanotube/carbon hierarchical composites [J]. Carbon,2014,69:239.
50 Peng L, Feng Y Y, Zhang P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotube grown on the fibers [J]. Carbon,2011,49:4665.
51 Zhao F, Huang Y D, Liu L, et al. Formation of a carbon fiber/polyhedral oligomericssilsesquioxae/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon,2011, 49:2624.
52 Li F, Liu Y, Qu C B, et al. Enhanced mechanical properties of short carbon fiber reinforced polyether sulfon composites by graphene oxide coating [J]. Polymer,2015,59:155.
53 Jiang S, Li Q F, Wang J W, et al. Multiscale graphene oxide-carbon fiber reinforcements for advanced polyurethane composites[J]. Composites Part A,2016,87:1.
54 Ashori A, Menbari S, Bahrami R, et al. Mechanical and thermomechanica properties of short carbon fiber reinforced polypropylene composites using exfoiated grapheme nanoplatelets coating [J]. J Ind Eng Chem,2016,38:37.
55 Chen L, Jin H, Xu Z W, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Mater Chem Phys,2014,145:186.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[12] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[13] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[14] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[15] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed