Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 97-105    https://doi.org/10.11896/j.issn.1005-023X.2017.09.013
  材料综述 |
用于CO催化氧化的负载型纳米金催化剂的研究进展*
姚欣蕾, 周淑君, 周涵, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
A Review on Supported Gold Nanocatalysts Used for CO Catalytic Oxidation
YAO Xinlei, ZHOU Shujun, ZHOU Han, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO作为许多工业环境和室内、室外环境的主要有毒气体污染物之一,其消除问题得到了研究者的广泛关注。利用负载型纳米金催化剂在温和条件下催化氧化CO一直是催化领域的研究热点。从载体种类、结构、制备方法和条件的角度阐述了近年来CO催化氧化负载型纳米金催化剂的研究进展,对现阶段研究存在的问题进行了总结,并展望了未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚欣蕾
周淑君
周涵
范同祥
关键词:  CO催化氧化  负载型纳米金催化剂  载体    
Abstract: As one of the main poisonous gases in many industry, indoor and outdoor environments, the elimination of CO has drawn extensive attention among researchers. Catalytic oxidation of CO in a mild condition with supported gold nanocatalysts is always the hotspot in catalysis field. An overview of research progress of supported gold nanocatalysts on CO oxidation is provided, covering the category and supported of supports as well as the preparation methods and conditions. The remaining challenges and prospects of the supported gold nanocatalysts on CO oxidation are summarized at the end.
Key words:  CO catalytic oxidation    supported gold nanocatalyst    support
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  X511  
基金资助: *国家杰出青年科学基金(51425103); 国家自然科学基金(51402191); 上海市优秀学术带头人基金(15XD1501900); 科技部国家国际重大科技合作专项基金(2015DFE52870)
通讯作者:  范同祥:男,1971年生,博士,教授,研究方向为特种功能金属基复合材料和生物启迪功能材料 E-mail:txfan@sjtu.edu.cn   
作者简介:  姚欣蕾:女,1992年生,硕士研究生,研究方向为纳米多孔材料 E-mail:yaoxinlei@sjtu.edu.cn
引用本文:    
姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
YAO Xinlei, ZHOU Shujun, ZHOU Han, FAN Tongxiang. A Review on Supported Gold Nanocatalysts Used for CO Catalytic Oxidation. Materials Reports, 2017, 31(9): 97-105.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.013  或          http://www.mater-rep.com/CN/Y2017/V31/I9/97
[1] Haruta M, Yamada N, Kobayashi T, et al.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal,1989,115(2):301.
[2] Haruta M, Date M.Advances in the catalysis of Au nanoparticles[J]. Appl Catal A-Gen,2001,222(1-2):427.
[3] Haruta M.Size- and support-dependency in the catalysis of gold[J]. Catal Today,1997,36(1):153.
[4] Kozlova A P, Sugiyama S, Kozlov A I, et al.Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)-(NO3): State and structure of the support[J]. J Catal,1998,176(2):426.
[5] Schubert M M, Hackenberg S, van Veen A C, et al. CO oxidation over supported gold catalysts-“iner” and “active” support materials and their role for the oxygen supply during reaction[J]. J Catal,2001,197(1):113.
[6] Khder A S, Hassan H M A, Betiha M A, et al. CO oxidation over Au and Pd nanoparticles supported on ceria-hafnia mixed oxides[J]. React Kinet Mech Cat,2014,112(1):61.
[7] Luengnaruemitchai A, Srihamat K, Pojanavaraphan C, et al.Acti-vity of Au/Fe2O3-TiO2 catalyst for preferential CO oxidation[J]. Int J Hydrogen Energ,2015,40(39):13443.
[8] Morfin F, Ait-Chaou A, Lomello M, et al.Influence of the partner oxide on the catalytic properties of Au/CexZr1-x highly loaded gold catalysts[J]. J Catal,2015,331:210.
[9] Grzybowska-Swierkosz B, Ruszel M, Grabowski R, et al.Au/ MCr2O4 (M = Co, Mn, Fe) catalysts in the oxidations of CO, C2, and C3 hydrocarbons[J]. Reaction Kinetics, Mechanisms Catalysis,2012,105(1):69.
[10] Zhen M, Overbury S H, Sheng D.Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives[J]. J Mol Catal A-Chem,2007,273(1-2):186.
[11] Mizera J, Spiridis N, Socha R P, et al.The influence of base metal (M) oxidation state in Au-M-O/TiO2 systems on their catalytic activity in carbon monoxide oxidation[J]. Catalysts,2012,2(1):38.
[12] Debeila M A, Wells R P K, Anderson J A. Influence of water and pretreatment conditions on CO oxidation over Au/TiO2-In2O3 catalysts[J]. J Catal,2006,239(1):162.
[13] Gluhoi A C, Nieuwenhuys B E.Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold[J]. Catal Today,2007,122(3-4):226.
[14] Moreau F, Bond G C, van der Linden B, et al. Gold supported on mixed oxides for the oxidation of carbon monoxide[J]. Appl Catal A-Gen,2008,347(2):208.
[15] Chi Y S, Lin H P, Mou C Y.CO oxidation over gold nanocatalyst confined in mesoporous silica[J]. Appl Catal A-Gen,2005,284(1-2):199.
[16] Qian K, Huang W, et al.Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal,2007,248(1):137.
[17] Qian K, Huang W, Fang J, et al.Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights[J]. J Catal,2008,255(2):269.
[18] Grisel R J H, Neiuwenhuys B E. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts[J]. Catal Today,2001,64(1-2):69.
[19] Gluhoi A C, Dekkers M A P, Nieuwenhuys B E. Comparative stu-dies of the N2O/H2 , N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: Effect of the addition of various oxides[J]. J Catal,2003,219(1):197.
[20] Kim K J, Chang C H, Ahn H G.The effect of zinc oxide addition to alumina-supported gold catalyst in low temperature carbon monoxide oxidation[J]. J Nanosci Nanotechnol,2015,15:660.
[21] Zhu H G, Liang C D, Yan W F, et al.Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique[J]. J Phys Chem B,2006,110(22):10842.
[22] Qu Z P, Ke G Z, Wang Y, et al.Investigation of factors influencing the catalytic performance of CO oxidation over Au-Ag/SBA-15 catalyst[J]. Appl Surf Sci,2013,277:293.
[23] Liu X Y, Wang A Q, Zhang T, et al.Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu ratios[J]. Catal Today,2011,160(1):103.
[24] Carabineiro S A C, Santos V P, Pereira M F R, et al. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials[J]. J Colloid Interface Sci,2016,480:17.
[25] Qi L, Tang C J, Zhang L, et al.Influence of cerium modification methods on catalytic performance of Au/mordenite catalysts in CO oxidation[J]. Appl Catal B-Environ,2012,127:234.
[26] Zamaro J M, Boix A V, Martinez-Hernandez A.CO oxidation over Au supported on Mn-ZSM5 and Mn-MOR[J]. Catal Commun,2015,69:212.
[27] Hammer N, Mathisen K, Ronning M.CO oxidation over Au/TiO2-carbon catalysts: The effect of thermal treatment, stability and TiO2 support structure[J]. Top Catal,2013,56(9-10):637.
[28] Zhong Z, Teo J, Lin M, et al.Synthesis of porous α-Fe2O3 nanorods as catalyst support and a novel method to deposit small gold colloids on them[J]. Top Catal,2008,49(3):216.
[29] Wang J, Shang K, Guo Y, et al.Easy hydrothermal synthesis of external mesoporous γ-Al2O3 nanorods as excellent supports for Au nanoparticles in CO oxidation[J]. Microp Mesop Mater,2013,181(2):141.
[30] Liu H, Lin Y, Ma Z.Au/LaPO4 nanowires: Synthesis, characte-rization, and catalytic CO oxidation[J]. J Taiwan Inst Chem E,2016,62:275.
[31] Liu J, Qiao B, Song Y, et al.Highly active and sintering-resistant heteroepitaxy of Au nanoparticles on ZnO nanowires for CO oxidation[J]. J Energy Chem,2016,25(3):361.
[32] Sandoval A, Zanella R, Klimova T E.Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation[J]. Catal Today,2016,282(2):140.
[33] Yang K, Zhang Y, Meng C, et al.Well-crystallized ZnCo2O4 nanosheets as a new-style support of Au catalyst for high efficient CO preferential oxidation in H2 stream under visible light irradiation[J]. Appl Surf Sci,2016,391:635.
[34] Zhou N N, He B B, Wang X H, et al.Preparation and characterization of Au@TiO2 core-shell hollow nanoparticles with CO oxidation performance[J]. J Nanopart Res,2014,16(11):2676.
[35] Wang J, Hu Z H, Miao Y X, et al.Hollow gamma-Al2O3 microspheres as highly “active” supports for Au nanoparticle catalysts in CO oxidation[J]. Gold Bull,2014,47(1-2):95.
[36] Zhang J, Liu X H, Wang S R, et al.Synthesis and catalytic activity of Au-supported porous TiO2 nanospheres for CO oxidation[J]. Powder Technol,2012,217:585.
[37] Yin H F, Ma Z, Chi M F, et al.Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation[J]. Catal Today,2011,160(1):87.
[38] Zhang X L, Li G J, Yang S, et al.Nanoporous CuO ribbons modified by Au nanoparticles through chemical dealloying and calcination for CO oxidation[J]. Microp Mesop Mater,2016,226:61.
[39] Ren L H, Zhang H L, Lu A H, et al.Porous silica as supports for controlled fabrication of Au/CeO2/SiO2 catalysts for CO oxidation: Influence of the silica nanostructures[J]. Microp Mesop Mater,2012,158(8):7.
[40] Soler L, Casanovas A, Urrich A, et al.CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2[J]. Appl Catal B-Environ,2016,197:47.
[41] Li S, Zhu H, Qin Z, et al.Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B-Environ,2014,144(2):498.
[42] Liu Y, Liu B, Wang Q, et al.Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases[J]. J Catal,2012,296(12):65.
[43] Liu Y, Liu B, Liu Y, et al. Improvement of catalytic performance of preferential oxidation of CO in H2-rich gases on three-dimensionally ordered macro- and meso-porous Pt-Au/CeO2 catalysts[J]. Appl Catal B-Environ,2013,142-143(1):615.
[44] Choudhary T V, Goodman D W.Catalytically active gold: The role of cluster morphology[J]. Appl Catal A-Gen,2005,291(1):566.
[45] And H Y L, Chen Y W. Low-Temperature CO Oxidation on Au/FexOy Catalysts[J]. Industrial Eng Chem Res,2005,44(13):4569.
[46] Kang Y M, Wan B Z.Gold and iron supported on Y-type zeolite for carbon monoxide oxidation[J]. Catal Today,1997,35(4):379.
[47] Kozlov A I, Kozlova A P, Liu H, et al.A new approach to active supported Au catalysts[J]. Appl Catal A-Gen,1999,182(1):9.
[48] Okumura M, Nakamura S, Tsubota S, et al.Chemical vapor deposition of gold on Al2O3 , SiO2 , and TiO2 for the oxidation of CO and of H2[J]. Catal Lett,1998,51(1):53.
[49] Grunwaldt J D, Kiener C, Wögerbauer C, et al.Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids[J]. J Catal,1999,181(2):223.
[50] Ma Z, Yin H F, Dai S.Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation[J]. Catal Lett,2010,138(1-2):40.
[51] Sandoval A, Louis C, Zanella R.Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea[J]. Appl Catal B-Environ,2013,140:363.
[52] Wang S P, Zhang T Y, Wang X Y, et al.Synthesis, characterization and catalytic activity of Au/Ce0.8Zr0.2O2 catalysts for CO oxidation[J]. J Mol Catal A-Chem,2007,272(1):45.
[53] Hodge N A, Kiely C J, Whyman R, et al.Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation[J]. Catal Today,2002,72(1-2):133.
[54] Meng M, Tu Y B, Ding T, et al.Effect of synthesis pH and Au loading on the CO preferential oxidation performance of Au/MnOx-CeO2 catalysts prepared with ultrasonic assistance[J]. Int J Hydrogen Energ,2011,36(15):9139.
[55] Zhu B L, Guo Q, Huang X L, et al.Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles[J]. J Mol Catal A-Chem,2006,249(1-2):211.
[56] Kim S H, Jung C H, Sahu N, et al.Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation[J]. Appl Catal A-Gen,2013,454:53.
[57] Dulnee S, Luengnaruemitchai A, Wanchanthuek R.Activity of Au/ZnO catalysts prepared by photo-deposition for the preferential CO oxidation in a H2-rich gas[J]. Int J Hydrogen Energ,2014,39(12):6443.
[58] Tsai H Y, Lin Y D, Fu W T, et al.The activation of supported Au catalysts prepared by impregnation[J]. Gold Bull,2007,40(3):184.
[59] Del Rio E, Lopez-Haro M, Cies J M, et al.Dramatic effect of redox pre-treatments on the CO oxidation activity of Au/Ce0.50Tb0.12Zr0.38- O2-x catalysts prepared by deposition-precipitation with urea: A nano-analytical and nano-structural study[J]. Chem Commun,2013,49(60):6722.
[60] Sekhar A C S, Sivaranjani K, Gopinath C S, et al. A simple one pot synthesis of nano gold-mesoporous silica and its oxidation catalysis[J]. Catal Today,2012,198(1):92.
[61] Ramirez-Garza R E, Pawelec B, Zepeda T A, et al. Total CO oxidation over Fe-containing Au/HMS catalysts: Effects of gold loading and catalyst pretreatment[J]. Catal Today,2011,172(1):95.
[62] Tai Y, Yamaguchi W, et al.Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au-titania boundaries: Effects of heat treatment conditions on catalytic activity[J]. J Catal,2010,270(2):234.
[63] Li Q L, Zhang Y H, Chen G X, et al.Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal,2010,273(2):167.
[64] Zhu H G, Ma Z, Clark J C, et al.Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor[J]. Appl Catal A-Gen,2007,326(1):89.
[65] Konova P, Naydenov A, Venkov C, et al.Activity and deactivation of Au/TiO2 catalyst in CO oxidation[J]. J Mol Catal A-Chem,2004,213(2):235.
[66] Zou X H, Qi S X, Suo Z H, et al.Activity and deactivation of Au/Al2O3 catalyst for low-temperature CO oxidation[J]. Catal Commun,2007,8(5):784.
[1] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[2] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[3] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[4] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 崔可建, 蔡超, 朱才镇. 基于植物多酚构筑新型功能材料[J]. 《材料导报》期刊社, 2018, 32(5): 755-764.
[7] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[8] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[9] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[10] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[11] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[12] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[13] 黄啸,郑曦,易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用*[J]. 材料导报编辑部, 2017, 31(10): 37-40.
[14] 张静静, 孙 杰, 李吉刚, 周 添, 陈立泉. 用于CO低温氧化负载型纳米金催化剂研究进展[J]. 材料导报, 2017, 31(1): 136-142.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed