Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 90-96    https://doi.org/10.11896/j.issn.1005-023X.2017.09.012
  材料综述 |
含能共晶技术研究进展*
豆荣荣, Zerraza-sofiane, 张教强, 周宏玉, 石慧敏
西北工业大学理学院, 西安 710129
Research Progress of Energetic Cocrystal Technology
DOU Rongrong, Zerraza-sofiane, ZHANG Jiaoqiang, ZHOU Hongyu, SHI Huimin
College of Science, Northwestern Polytechnical University, Xi'an 710129
下载:  全 文 ( PDF ) ( 1813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含能共晶技术在分子水平上可实现具有不同性能的含能化合物(如高能分子与低感度分子)之间的非共价键作用,并赋予含能化合物新的性能。同时,含能共晶技术在不改变原有含能化合物分子结构的前提下,可提高其稳定性,降低其感度。目前,高能量低感度含能化合物已成为研究热点之一。着重介绍了含能共晶技术的国内外研究现状,并主要从基础研究、研究进展、发展动态分析与理论计算等几个方面进行总结,最后对含能共晶技术研究存在的问题进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
豆荣荣
Zerraza-sofiane
张教强
周宏玉
石慧敏
关键词:  共晶技术  含能化合物  感度    
Abstract: Energetic cocrystal technology can implement the non-covalent interactions among energetic compounds (such as high-energy molecules and low sensitivity molecules) with different properties in molecular level, and endowed energetic compounds with new performance. Meanwhile, on the premise of without changing the molecular structure of original energetic compounds, energetic cocrystal technology can improve its stability and reduce its sensitivity. In allusion to the actuality that energetic compounds have been one of the hot spots at present, this paper introduces the research status of energetic cocrystal technology at home and abroad, from basic research, progress and developments in analysis and theoretical investigation. In the end, the existing problems of the energetic cocrystal technology are analyzed.
Key words:  energetic cocrystal technology    energetic compound    sensitivity
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB14  
  O62  
基金资助: *国家自然科学基金(21673182)
通讯作者:  张教强:男,1965年生,博士,副教授,研究方向为含能共晶相化学及热化学 E-mail:zhangjq@nwpu.edu.cn   
作者简介:  豆荣荣:女,1990年生,硕士研究生,研究方向为含能共晶材料 E-mail:doudou@mail.nwpu.edu.cn
引用本文:    
豆荣荣, Zerraza-sofiane, 张教强, 周宏玉, 石慧敏. 含能共晶技术研究进展*[J]. CLDB, 2017, 31(9): 90-96.
DOU Rongrong, Zerraza-sofiane, ZHANG Jiaoqiang, ZHOU Hongyu, SHI Huimin. Research Progress of Energetic Cocrystal Technology. Materials Reports, 2017, 31(9): 90-96.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.012  或          http://www.mater-rep.com/CN/Y2017/V31/I9/90
[1] Urbelis J H, Swift J A.Solvent effects on the growth morphology and phase purity of CL-20[J]. Crystal Growth Des,2014,14(4):1642.
[2] Agrawal J P, Hodgson R.Organic chemistry of explosives[M]. West Sussex:John Wiley & Sobs,2007:17.
[3] Agrawal J.The chemistry of explosives[M].Cambridge:Royal Society of Chemistry,2011:22.
[4] Becuwe A, Delclos A.Low-sensitivity explosive compounds for low vulnerability warheads[J]. Propellants, Explosives, Pyrotechnics,1993,18(1):1.
[5] Gao H, Shreeve JnM. Azole-based energetic salts[J]. Chem Rev,2011,111(11):7377.
[6] Thottempudi V, Gao H, Shreeve JnM. Trinitromethyl-substituted 5-nitro-or 3-azo-1, 2, 4-triazoles: Synthesis, characterization, and energetic properties[J]. J Am Chem Soc,2011,133(16):6464.
[7] Wei X, Zhang A, Ma Y, et al.Toward low-sensitive and high-energetic cocrystal Ⅲ: Thermodynamics of energetic-energetic cocrystal formation[J]. CrystEngComm,2015,17(47):9037.
[8] Wu J T, Zhang J G, Li T, et al.A novel cocrystal explosive NTO/TZTN with good comprehensive properties[J]. RSC Adv,2015,5(36):28354.
[9] Xu H F, Duan X H, Li H Z, et al.A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method[J]. RCS Adv,2015,5(116):95764.
[10] Bolton O, Matzger A J.Improved stability and smart-material functionality realized in an energetic cocrystal[J]. Angew Chem Int Ed,2011,50(38):8960.
[11] Yang Z, Li H, Huang H, et al.Preparation and performance of a HNIW/TNT cocrystal explosive[J]. Propellants, Explosives, Pyrotechnics,2013,38(4):495.
[12] Landenberger K B, Matzger A J.Cocrystals of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclooctane (HMX)[J]. Crystal Growth Des, 2012, 12(7):3603.
[13] Shen J P,Duan X H,Luo Q P,et al.Preparation and characterization of a novel cocrystal explosive[J]. Crystal Growth Des,2011,11(5):1759.
[14] Pfund L Y, Price C P, Frick J J, et al.Controlling pharmaceutical crystallization with designed polymeric heteronuclei[J]. J Am Chem Soc,2015,137(2):871.
[15] Chen P Y, Zhang L, Zhu S G, et al.Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive[J]. Canadian Chem,2015,93(6):632.
[16] Zhang A B, Cao Y F, Ma Y, et al.Theoretical research on packing structures of energetic cocrystals[J]. Chin J Energetic Mater,2015,23(9):848 (in Chinese).张安帮, 曹耀峰, 马宇, 等. 含能共晶堆积结构的理论研究[J]. 含能材料,2015,23(9):848.
[17] Klapötke T M, Mayer P, Mir��Sabaté C. 1,2,4-Triazolium and tetrazolium picrate salts:“on the way” from nitroaromatic to azole-based energetic materials[J].Eur J Inorg Chem,2008,2008(34):5350.
[18] Klapötke T M, Mayer P, Mir��Sabat�� C, et al. Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole[J]. Inorg Chem,2008,47(13):6014.
[19] Xue H, Gao H, Twamley B, et al.Energetic nitrate, perchlorate, azide and azolate salts of hexamethylenetetramine[J]. Eur J Inorg Chem,2006,2006(15):2959.
[20] Levinthal M L. Propellant made with cocrystals of cyclotetramethy-leneteranitramine and ammonium perchlorate,US,4086110[P].1978-04-25.
[21] Xu W Y, Xiong J A, Jing B Y, Properties research on cocrystal AP/HMX[J]. Propulsion Technol,1986,7(5):62(in Chinese).徐文英, 熊静安, 静宝元. 过氯酸铵(AP)与奥克托今(HMX)共晶物性能研究[J]. 推进技术,1986,7(5):62.
[22] Bond A D.What is a co-crystal?[J]. CrystEngComm,2007,9(9):833.
[23] Aakeröy C B, Schultheiss N C, Rajbanshi A, et al.Supramolecular synthesis based on a combination of hydrogen and halogen bonds[J]. Crystal Growth Des,2008,9(1):432.
[24] Vishweshwar P, Mcmahon J A, Bis J A, et al.Pharmaceutical co-crystals[J]. J Pharmaceutical Sci,2006, 95(3):499.
[25] Klapötke T M, Preimesser A, Stierstorfer J.Energetic derivatives of 4, 4', 5, 5'-tetranitro-2, 2'-bisimidazole (TNBI)[J]. Zeitschrift für Anorganische und Allgemeine Chemie,2012,638(9):1278.
[26] Duddu R, Dave P R, Damavarapu R, et al.Synthesis of N-amino-and N-nitramino-nitroimidazoles[J]. Tetrahedron Lett,2010,51(2):399.
[27] Wang R, Xu H, Guo Y, et al.Bis [3-(5-nitroimino-1, 2, 4-triazolate)]-based energetic salts: Synthesis and promising properties of a new family of high-density insensitive materials[J]. J Am Chem Soc,2010, 132(34):11904.
[28] Sikder A, Sikder N.A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. J Hazard Mater,2004,112(1):1.
[29] Talawar M, Sivabalan R, Anniyappan M, et al.Emerging trends in advanced high energy materials[J]. Combustion, Explosion, and Shock Waves,2007,43(1):62.
[30] Talawar M,Sivabalan R,Mukundan T,et al.Environmentally com-patible next generation green energetic materials (GEMs)[J]. J Hazard Mater,2009,161(2):589.
[31] Dippold A A, Klapötke T M.A study of dinitro-bis-1, 2, 4-triazole-1, 1'-diol and derivatives: Design of high-performance insensitive energetic materials by the introduction of N-oxides[J]. J Am Chem Soc,2013,135(26):9931.
[32] An Q, Xiao H, Meng X, et al.Stability of NNO and NPO nanotube crystals[J]. J Phys Chem Lett,2014, 5(3):485.
[33] Landenberger K B, Matzger A J.Cocrystal engineering of a prototype energetic material: Supramolecular chemistry of 2, 4, 6-trinitrotoluene[J]. Crystal Growth Des,2010,10(12):5341.
[34] Zhang C, Cao Y, et al.Toward low-sensitive and high-energetic cocrystal I: Evaluation of the power and the safety of observed energe-tic cocrystals[J]. CrystEngComm,2013,15(19):4003.
[35] Klapötke T M, Petermayer C, Piercey D G, et al.1, 3-Bis (nitroi-mido)-1, 2, 3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials[J]. J Am Chem Soc,2012,134(51):20827.
[36] Lara-Ochoa F, Espinosa-Pérez G.Cocrystals definitions[J]. Supramolecular Chem,2007, 19(8): 553.
[37] Shan N, Zaworotko M J.The role of cocrystals in pharmaceutical science[J]. Drug Discovery Today,2008, 13(9):440.
[38] Nehm S J, Rodríguez-Hornedo N.Phase solubility diagram of cocrystals are explained by solublity product and solution complexation[J]. Crystal Growth Des,2006,6(2):592.
[39] Zhang G G Z, Henry R F, Borchardt T B,, et al. Efficient co-crystal screening using solution-mediated phase transformation[J]. J Pharmaceutical Sci,2007,96(5):990.
[40] Childs S L, Chyall L J, et al.Crystal engineering approach to for-ming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids[J]. J Am Chem Soc,2004,126(41):13335.
[41] 程能林. 溶剂手册(第二版)[M]. 北京:化学工业出版社,1994:357.
[42] Trask A V, Motherwell W D S, Jones W. Pharmaceutical cocrystallization: Engineering a remedy for caffeine hydration[J]. Crystal Growth Des,2005,5(3):1013.
[43] Liu K, Zhang G, Luan J, et al.Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT[J]. Molecular Structure,2016,1110:91.
[44] Peterson M L, Morissette S L, Mc Nulty C, et al.Interative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III[J]. J Am Chem Soc,2002,124(37): 10958.
[45] Trask A V,Jones W.Crystal engineering of organic cocrystals by the solid-state grinding approach[M] ∥Organic Solid State Reactions.Berlin,Heidelberg:Springer,2005:41.
[46] Qiao N, Li M, Schlindwein W, et al.Pharmaceutical cocrystals: An overview[J]. Int J Dharmaceutics, 2011,419(1): 1.
[47] Qiu H, Patel R B, Damavarapu R S, et al.Nanoscale 2CL-20 HMX high explosive cocrystal synthesized by bead milling[J]. CrystEngComm,2015,17(22):4080.
[48] Yang Z, Wang Y, Zhou J, et al.Preparation and performance of a BTF/DNB cocrystal explosive[J]. Propellants, Explosives, Pyrotechnics,2014,39(1):9.
[49] Guo C, Zhang H, Wang X, et al.Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal[J]. J Molecular Structure,2013,1048:267.
[50] Landenberger K B, Bolton O, Matzger A J.Two isostructural explosive cocrystals with significantly different thermodynamic stabilities[J]. Angew Chem Int Ed,2013,52(25):6468.
[51] Bennion J C, McBain A, Son S F, et al. Design and synthesis of a series of nitrogen-rich energetic cocrystals of 5, 5'-dinitro-2 H, 2 H'-3, 3'-bi-1, 2, 4-triazole (DNBT)[J]. Crystal Growth Des,2015,15(5):2545.
[52] Bolton O, Simke L R, Pagoria P F, et al.High power explosive with good sensitivity: A 2: 1 cocrystal of CL-20: HMX[J]. Crystal Growth Des,2012,12(9):4311.
[53] Landenberger K B, Bolton O, Matzger A J.Energetic-energetic cocrystals of diacetone diperoxide(DADP): Dramatic and divergent sensitivity modifications via cocrystallization[J]. J Am Chem Soc,2015, 137(15):5074.
[54] Lin H, Zhang H, Zhu S G,et al.Molecular dynamic simulation of cyclotetramethylene tetranitramine/1,1-diamino-2.2-dinitroethylene co-crystal explosive[J]. Acta Armamentarii,2012,33(9):1025(in Chinese).林鹤, 张琳, 朱顺官, 等. HMX/FOX-7 共晶炸药分子动力学模拟[J]. 兵工学报,2012,33(9):1025.
[55] Lammert P E.Taming density functional theory by coarse-graining[J]. arXiv preprint arXiv,2009:1263.
[56] Lin H, Zhu S G, Li H Z, et al.Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive[J]. J Molecular Structure,2013,1048:339.
[57] Lin H, Zhu S G, Zhang L, et al.Synthesis and first principles investigation of HMX/NMP cocrystal explosive[J]. J Energetic Mater,2013,31(4):261.
[58] Sun T, Xiao J J, Liu Q, et al.Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation[J]. J Mater Chem A,2014, 2(34):13898.
[59] Liu Q, Xiao J J, Zhang J,et al.Molecular dynamics simulation on CL-20/TNT cocrystal explosive[J]. Chem J Chinese Universities,2016,37(3):559 (in Chinese).刘强, 肖继军, 张将, 等. CL-20/TNT 共晶炸药的分子动力学研究[J]. 高等学校化学学报,2016, 37(3):559.
[60] Sun T, Liu Q, Xiao J J, et al.Molecular dynamics simulation of interface interactions and mechanical properties of CL-20/HMX cocrystal and its based PBXs[J]. Acta Chim Sin,2014,72(9):1036 (in Chinese).孙婷, 刘强, 肖继军, 等. CL-20/HMX 共晶及其为基 PBX 界面作用和力学性能的 MD 模拟研究[J]. 化学学报,2014,72(9):1036.
[61] Xiong S, Chen S, Jin S, et al.Molecular dynamics simulations on dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate/hexanitrohexaazaisowurtzitane cocrystal[J]. RSC Adv,2016,6(5):4221.
[62] Liu H, Li Q K, He Y H.Molecular dynamics simulations of shock initiation of hexanitrohexaazaisowurtzitane/trinitrotoluene cocrystal[J]. Acta Phys Sin,2015,64(1):18201(in Chinese).刘海, 李启楷, 何远航. 六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯共晶冲击起爆过程的分子动力学模拟[J]. 物理学报,2015,64(1):18201.
[1] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed