Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10166-10170    https://doi.org/10.11896/cldb.19050040
  高分子与聚合物基复合材料 |
活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究
宋鹏宇, 邓永岩, 韩海杰, 金桥
浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州 310027
Reactive Oxygen Species Activated Polymeric Drug Nanocarriers for Combined Photodynamic-Chemotherapy of Cancer
SONG Pengyu, DENG Yongyan, HAN Haijie, JIN Qiao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
下载:  全 文 ( PDF ) ( 3209KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 在肿瘤治疗中,光动力学治疗(PDT)受到了人们越来越多的关注。本工作针对光敏剂的皮肤光敏感、分子聚集会降低光动力学效应等局限,合成了带有活性氧(ROS)敏感酮缩硫醇的阿霉素(DOX),并物理封装光敏剂二氢卟吩e6(Ce6),构建了ROS可激活的联合治疗纳米载体。该纳米载体本身处于未激活状态,显示出微弱的动力学治疗效果和化学毒性,但在肿瘤细胞内高浓度ROS的作用下,酮缩硫醇键会发生断裂,释放出DOX,同时使胶束解组装释放出Ce6,从而通过Ce6的光动力学治疗和DOX的化疗有效抑制肿瘤细胞的增殖。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋鹏宇
邓永岩
韩海杰
金桥
关键词:  光动力学治疗  活性氧  纳米载体  联合治疗    
Abstract: In tumor therapy, photodynamic therapy (PDT) has attracted more and more attention. In order to address the limitations of photosensitizer skin photosensitivity and molecular aggregation that can reduce photodynamic effects, the amphiphilic block copolymer containing reactive oxygen (ROS)-sensitive keto thiol-linked DOX was synthesized. The photosensitizer dihydroporphyrin e6 (Ce6) was physically encapsulated to construct the co-delivered nanocarrier which can be activated by intracellular ROS. The nanocarrier itself was in the inactive state, showing a weak photodynamic effect and low cytotoxicity. However, at high concentrations within the tumour cells under the action of ROS, ketone mercaptan linkage would be cleaved and DOX would be released, resulting in the disassembly of the micelles and release of Ce6. Ce6 and DOX could be released effectively in high ROS concentration. Compared to the nanocarriers that were not sensitive to intracellular ROS, the ROS sensitive nanocarriers could be readily activated after internalization. Therefore, more ROS could be generated after light irradiation. Moreover, the intracellular release of Ce6 and DOX was very beneficial to inhibit the proliferation of cancer cells. The co-delivered nanocarriers showed higher cytotoxic effect and inhibited the proliferation of cancer cells effectively compared with the single treatment of DOX and Ce6.
Key words:  photodynamic therapy    reactive oxygen    nanocarriers    combined therapy
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TQ050  
基金资助: 国家自然科学基金(51573160)
通讯作者:  金桥,浙江大学高分子科学与工程学系副教授。2010年9月在浙江大学高分子科学与工程学系获得博士学位,2011—2012年在德国马尔堡大学开展博士后研究工作,并于2012年11月进入浙江大学高分子科学与工程学系从事教学科研工作,2014年晋升副教授。目前主要从事智能纳米药物载体的研究,迄今已在ACS Nano、Material Horizons、Biomaterials、Small等期刊发表学术论文50余篇。jinqiao@zju.edu.cn   
作者简介:  宋鹏宇,男,1993年4月出生于江苏常州。2011年9月考入南京工业大学材料学院高分子材料与工程专业,2015年6月获得工学学士学位。2015年6月至2016年4月于常州市华科聚合物有限公司任研发助理。2016年9月,考入浙江大学高分子科学与工程学系攻读高分子材料专业的硕士学位。在金桥副教授教授的指导下,从事光动力学-化疗联合治疗纳米载体的构筑及应用的研究。
引用本文:    
宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
SONG Pengyu, DENG Yongyan, HAN Haijie, JIN Qiao. Reactive Oxygen Species Activated Polymeric Drug Nanocarriers for Combined Photodynamic-Chemotherapy of Cancer. Materials Reports, 2020, 34(10): 10166-10170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050040  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10166
1 Hu Z A, Xie Y L, Wang Y X, et al. Journal of Physical Chemistry C, 2009, 113(28),12502.
2 Bazarbashi S, Elbassiouni M, Abdelsalam M, et al. Journal of Surgical Oncology, 2010, 98(3),167.
3 Nicolescu N, Molnár G, Iancu C, et al. Chirurgia, 2011, 106(1),33.
4 Kortmann R D, Timmermann B, Taylor R E, et al. Strahlentherapie Und Onkologie, 2003, 179(9),585.
5 Kim J W, Jang J Y, Chang Y W. World Journal of Gastroenterology, 2015, 21(27),8358.
6 Agostinis P, Berg K, Cengel K A, et al. CA: A Cancer Journal for Clinicians, 2011,61(4),250.
7 Liu Y, Ban D X, Ma C, et al. Journal of Biomedical Nanotechnology, 2016, 12(11),2063.
8 Qin S Y, Zhang A Q, Zhang X Z. Small, 2018, 14(45), 1802417.
9 Chen D G,Xiong X Y,Gong Y C,et al.Material Reports A:Review Papers, 2019 33(2),517(in Chinese).
陈道鸽, 熊向源, 龚妍春, 等.材料导报:综述篇, 2019 33(2),517.
10 Jin Q, Deng Y, Chen X, et al. ACS Nano, 2019, 13, 954.
11 Wang Y, Deng Y, Luo H, et al. ACS Nano, 2017, 11(12), 12134.
12 Deng Y, Käfer F, Chen T, et al. Small, 2018, 14(37), 1802420.
13 Hartshorn C M, Bradbury M S, Lanza G M, et al. ACS Nano, 2017, 12(1),24.
14 Deng Y, Jia F, Chen S, et al. Biomaterials, 2018, 187, 55.
15 Wu J, Han H, Jin Q, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 14596.
16 Du J Z, Li H J, Wang J. Accounts of Chemical Research, 2018, 51(11), 2848.
17 Lu A,Hou Y,Wu Z,et al. Acta Polymerica Sinica, 2016 (10), 1400(in Chinese).
陆爱菁, 侯宇, 吴正中, 等.高分子学报, 2016 (10), 1400.
18 Cao Z, Ma Y, Sun C, et al. Chemistry of Materials, 2018, 30(2),517.
19 Tong H, Chen Y, Li Z,et al. Small, 2016, 12(45),6223.
20 Han H, Valdepeérez D, Jin Q, et al. ACS Nano, 2017, 11(2),1281.
21 Elegbede A I, Banerjee J, Hanson A J, et al. Journal of the American Chemical Society, 2008, 130(32), 10633.
22 Kelley E G, Albert J N, Sullivan M O, et al. Chemical Society Reviews2013, 42, 7057.
23 Xiong M H, Bao Y, Du X J, et al. ACS Nano, 2013, 7(12),10636.
24 Lei Q, Wang S B, Hu J J, et al. ACS Nano, 2017, 11(7), 7201.
25 Wu J, Lin Y, Li H, et al. Journal of Colloid and Interface Science, 2017, 485, 251.
26 Li J, Sun C, Tao W, et al. Biomaterials, 2018, 170,147.
27 Hu J J, Lei Q, Peng M Y, et al. Biomaterials, 2017, 128, 136.
[1] 张婷, 刘桂华, 陈斌斌, 齐天贵, 周秋生, 彭志宏, 李小斌. 高比表面积氧化铝微粉从碱性废水中除氟[J]. 材料导报, 2020, 34(4): 4020-4024.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed