Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4020-4024    https://doi.org/10.11896/cldb.19010220
  无机非金属及其复合材料 |
高比表面积氧化铝微粉从碱性废水中除氟
张婷, 刘桂华, 陈斌斌, 齐天贵, 周秋生, 彭志宏, 李小斌
中南大学冶金与环境学院,长沙 410083
Removal of Fluoride in Alkaline Solution Using Fine Alumina with High Specific Surface Area
ZHANG Ting, LIU Guihua, CHEN Binbin, QI Tiangui, ZHOU Qiusheng, PENG Zhihong, LI Xiaobin
School of Metallurgy and Environment, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 3119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以合成的活性氧化铝微粉为吸附剂,研究了碱性含氟废水中pH值、初始氟浓度、吸附时间、氧化铝添加量等对除氟率和吸附容量的影响,讨论了其吸附机理。以铝酸钠溶液为原料,经氢氧化铝、丝钠铝石、碳酸铝铵和氧化铝等物相转化,制备了比表面积为409.03 m2·g-1的介孔氧化铝微粉。当pH值为 7.0~9.4时,氧化铝微粉的除氟率较高。延长吸附时间、降低氟浓度或提高微粉加入量有利于提高除氟率。Zeta电位随溶液pH值的增大而减小, 等电点为9.77。当pH值为8.1时,高比表面积、静电吸引、多层吸附是碱性条件下氧化铝微粉吸附容量大(9.28 mg·g-1)、除氟率高(94.20%)的主要原因。同时,吸附也符合拟二级动力学模型,对氟的吸附受化学吸附控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷
刘桂华
陈斌斌
齐天贵
周秋生
彭志宏
李小斌
关键词:  活性氧化铝  比表面积    碱性溶液  脱除    
Abstract: Effect of pH, initial fluoride concentration, duration, alumina dosage on removal rate and adsorption capacity were studied by adding the fine activated alumina, and removal mechanism was then discussed. A fine activated alumina with specific surface area of 409.03 m2·g-1 was prepared by phase evolution from gibbsite, dawsonite, ammonia aluminate carbonate hydrate to mesoporous γ-Al2O3 after gibbsite precipitated from sodium aluminate solution. Results indicate that fluoride is efficiently removed within pH range from 7 to 9.4. Prolonging adsorption time, reducing fluoride concentration, and increasing alumina dosage improve removal rate. Meanwhile, increase in pH reduces zeta potential, and IEP is equal to 9.77. High specific surface area, electrostatic attraction, and multilayer adsorption contribute to adsorption capacity of 9.28 mg·g-1 and removal rate of 94.20% in solution of pH 8.1. In addition, chemisorption is rate controlling step according to pseudo-second rate equation in removal of fluoride in alkaline solution.
Key words:  activated alumina    specific surface area    fluoride    alkaline solution    removal
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TU991.266  
基金资助: 国家自然科学基金(51874366)
通讯作者:  liugh303@csu.edu.cn   
作者简介:  张婷,中南大学冶金与环境学院硕士研究生,主要研究方向为氧化铝材料的制备和应用;刘桂华,中南大学教授,博士研究生导师。1998年获中南工业大学有色冶金博士学位留校至今。长期从事氧化铝化学与工艺、湿法冶金基础理论、铬盐清洁化生产以及粉体材料制备和应用等领域的研究工作。承担和参加国家重点科技攻关项目、“973”项目、国家自然科学基金以及中国铝业、ALCOA(美国铝业公司)等企业课题40多项,已产业化的技术9项,申请专利40余项,授权专利20余项,发表论文50多篇,获省部级奖8项。
引用本文:    
张婷, 刘桂华, 陈斌斌, 齐天贵, 周秋生, 彭志宏, 李小斌. 高比表面积氧化铝微粉从碱性废水中除氟[J]. 材料导报, 2020, 34(4): 4020-4024.
ZHANG Ting, LIU Guihua, CHEN Binbin, QI Tiangui, ZHOU Qiusheng, PENG Zhihong, LI Xiaobin. Removal of Fluoride in Alkaline Solution Using Fine Alumina with High Specific Surface Area. Materials Reports, 2020, 34(4): 4020-4024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010220  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4020
1 Li Y F, Meng F P, Yao R H. Technology of Water Treatment,2010,36(7),10(in Chinese).
李永富,孟范平,姚瑞华.水处理技术,2010,36(7),10.
2 Kamble S P, Deshpande G, Barve P P, et al. Desalination, 2010, 264(1),15.
3 Dhawane S H, Khan A A, Singh K, et al. Environmental Progress and Sustainable Energy, 2018,37(2),766.
4 Li R B, Yu H R, Li G B. Water Technology,2018, 12 (1), 21(in Chinese).
李润波,余华荣,李圭白. 供水技术,2018, 12 (1 ) ,21.
5 Kumar E, Bhatnagar A, Kumar U, et al. Journal of Hazardous Mate-rials, 2011, 186(2-3), 1042.
6 Avinash Chunduri L A, Rattan T M, Molli M, et al. Materials Express, 2014, 4 (3), 235.
7 Tangsir S, Hafshejani L D, Lahde A, et al. Chemical Engineering Journal,2016,288, 198.
8 Xu N C, Liu Z, Dong Y P, et al. Ceramics International,2016, 42(14), 15253.
9 Singh I B, Gupta A, Dubey S, et al. Journal of Sol-Gel Science and Technology, 2016,77(2),416.
10 Shivaprasad P, Singh P K, Saharan V K, et al. Nano-Structures & Nano-Objects, 2018,13, 109.
11 Zhang Y X, Jia Y. Ceramics International, 2016,42(15), 17472.
12 Teng S X, Wang S G, Gong W X, et al. Journal of Hazardous Materials, 2009, 168(2), 1004.
13 Xu L, Ma P G, Ding W M. Journal of Beijing University of Chemical Technology (Natural Science), 2017(6), 18(in Chinese).
徐雷, 马培根,丁文明. 北京化工大学学报(自然科学版), 2017(6), 18.
14 Yang W C, Tian S Q, Tang Q Z, et al. Journal of Colloid and Interface Science, 2017,496, 496.
15 Cheng J M, Meng X G, Jing C Y, et al. Journal of Hazardous Materials, 2014, 278, 343.
16 Kumari U, Behera S K, Meikap B C. Journal of Hazardous Materials, 2019, 365, 868.
17 Duang Y, Wang C C, Li X D, et al. Journal of Water and Health, 2014,12 (4),715.
18 Hafshejani L D, Tangsir S, Daneshvar E, et al. Journal of Molecular Li-quids, 2017, 238, 254.
19 Millar G J, Couperthwaite S J, Dawes L A, et al. Separation and Purification Technology,2017,187, 14.
20 Zhai L, Fu H X, Wang C W, et al. Environmental Engineering, 2014,32 (1), 147(in Chinese).
瞿露, 付宏祥, 汪诚文,等.环境工程, 2014,32 (1), 147.
21 Liu F, Sun Q L. Sichuan Chemical Industry, 2016,19 (3), 49(in Chinese).
刘昉,孙俏丽.四川化工,2016,19(3),49.
22 Chauhan V S, Dwivedi P K, Iyengar L. Journal of Hazardous Materials, 2007,139(1),103.
23 Gong W X, Qu J H, Liu R P, et al. Chemical Engineering Journal, 2012,189-190,126.
24 Liu G H, Wu G Y, Chen W, et al. Hydrometallurgy, 2018,176, 253.
25 Ji J, Duan X Z, Qian G, et al. International Journal of Hydrogen Energy, 2014, 39(24),12490.
26 Lee G, Chen C, Yang S T, et al. Microporous & Mesoporous Materials, 2010, 127(1),152.
27 Zhang K S, Wu S B, He J Y. Journal of Colloid and Interface Science, 2016, 475(7),17.
28 Srivastava V, Weng C H, Vinay S, et al. Journal of Chemical & Engineering Data, 2011, 56(4),1414.
29 Marzouk I, Hannachi C, Lassaad D, et al. Desalination & Water Treatment, 2011, 26(1-3),279.
30 Bian W B, Huang W H, Ou H X, et al. Acta Scientiae Circumstantiae, 2014, 34(7),1716(in Chinese).
卞维柏,黄卫红,欧红香,等.环境科学学报, 2014, 34(7),1716.
[1] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[2] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[3] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[4] 杭思羽, 徐闻婷, 韩志伟, 王伯良. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(Z2): 410-414.
[5] 张万里, 郑刚, 孙斌, 陈卡凌, 沈翔. 乙烯-三氟氯乙烯共聚物的制备及其在电线电缆上的应用进展[J]. 材料导报, 2019, 33(Z2): 609-612.
[6] 韦学玉, 杨晓凡, 白炳莲, 徐晓平, 李济源, 刘志刚. 对氟离子呈现状态和比色响应的有机凝胶的研究进展[J]. 材料导报, 2019, 33(9): 1583-1594.
[7] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[8] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[9] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[10] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[11] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[12] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[13] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[14] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[15] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed