Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2293-2298    https://doi.org/10.11896/cldb.18060151
  无机非金属及其复合材料 |
碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池
陈玮1, 聂艳艳2, 孙晓刚1, 李旭1, 王杰1
1 南昌大学机电工程学院,南昌 330031;
2 江西克莱威纳米碳材料有限公司,南昌 330052
High Capacity Li/CFx Primary Batteries with Carbonized Fluorinated Graphite/Multiwalled Carbon Nanotubes/Cellulose Fibers Composite Paper as Cathode
CHEN Wei1, NIE Yanyan2, SUN Xiaogang1, LI Xu1, WANG Jie1
1 School of Mechatronics Engineering, Nanchang University, Nanchang 330031;
2 NanoCarbon Co. Ltd., Nanchang 330052
下载:  全 文 ( PDF ) ( 2981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用多壁碳纳米管(MWCNTs)、纤维素(Cellulose fibers)和活性物质氟化石墨(CF1)复合制备成柔性纸,经碳化后,以此碳化CF1-MWCNTs-Cel复合纸作正极组装成锂氟一次电池。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析仪(TGA)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)进行结构和性能表征,通过恒流放电和电化学阻抗(EIS)测试电池的电化学性能。结果表明,在相同的放电倍率下,碳化CF1-MWCNTs-Cel复合纸能有效提高Li/CFx一次电池的放电容量和平台稳定性。在放电倍率为2C,碳化CF1-MWCNTs-Cel复合纸和CF1-Al电极作正极时,电池的放电比容量分别为440.4 mAh/g和321 mAh/g,相对于后者,前者对放电比容量的提升高达37%。碳化CF1-MWCNTs-Cel复合纸作电极展现出优异的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玮
聂艳艳
孙晓刚
李旭
王杰
关键词:  多壁碳纳米管  氟化石墨  纤维素  碳化  锂/氟一次电池    
Abstract: A flexible paper was composited by active material of fluorinated graphite (CF1), multiwalled carbon nanotubes (MWCNTs) and cellulose fibers. After carbonization, the paper was used as cathode to assemble Li/CFx primary batteries. The structures and properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analyzer (TGA), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was tested by galvanostatic discharge and electrochemical impedance spectroscopy (EIS). At the same discharge rate, CF1-MWCNTs-Cel paper as cathode exhibited higher discharge capacity and discharge plateau than those of CF1-Al electrode as cathode. CF1-MWCNTs-Cel paper and CF1-Al electrodes respectively reached 440.4 mAh/g and 321 mAh/g at 2C, CF1-MWCNTs-Cel paper exhibited a 37% higher capacity than that of CF1-Al electrodes. CF1-MWCNTs-Cel paper as cathode shows excellent electrochemical performance.
Key words:  multiwalled carbon nanotubes    fluorinated graphite    cellulose fibers    carbonization    Li/CFx primary batteries
                    发布日期:  2019-06-19
ZTFLH:  O646  
基金资助: 江西省科技厅科研项目(20142BBE50071);江西省教育厅项目(KJD13006)
通讯作者:  xiaogangsun@163.com   
作者简介:  陈玮,2019年6月毕业于南昌大学,获得工程硕士学位。主要从事锂离子电池和超级电容器领域的研究。孙晓刚,南昌大学,教授,江西克莱威纳米碳材料有限公司,董事长& CEO。主要从事纳米碳材料的研发,重点研究锂硫电池、锂硅电池、锂氟电池及超级电容器。主持省(部)级项目3项,其他项目8项。出版英文专著2部、发表论文50余篇,其中SCI/EI收录18篇,获授权国家发明专利8项。
引用本文:    
陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
CHEN Wei, NIE Yanyan, SUN Xiaogang, LI Xu, WANG Jie. High Capacity Li/CFx Primary Batteries with Carbonized Fluorinated Graphite/Multiwalled Carbon Nanotubes/Cellulose Fibers Composite Paper as Cathode. Materials Reports, 2019, 33(14): 2293-2298.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060151  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2293
1 Peng S, Yan S, Wang N, et al. RSC Advances, 2018, 8(23),12701.
2 Brochard P, Godillot G, Peres J P, et al. In: 10th European Space Po-wer Conference. Noordwijkerhout, 2014, pp.719.
3 Rangasamy E, Li J, Sahu G, et al. Journal of the American Chemical Society, 2014, 136(19),6874.
4 Li L.International Journal of Electrochemical Science, 2016,11,6838.
5 Zhang Q, Takeuchi K J, Takeuchi E S, et al. MRS Advances, 2016, 1(6),403.
6 Jayasinghe R, Sumanasekera G U, Thapa A K, et al. Thermal and Plasma CVD of Nanostructures. Vienna, 2014, pp.1582.
7 Wu C, Wang H, Liao C, et al. Electrochimica Acta, 2015, 186,631.
8 Ignatova A A, Yarmolenko O V, Tulibaeva G Z, et al. Journal of Power Sources, 2016, 309,116.
9 Lyu D J, Zhu S S, Qiu G W, et al. Chinese Journal of Power Sources, 2018(1),147(in Chinese).
吕殿君, 祝树生, 仇公望,等.电源技术, 2018(1),147.
10 Pang C, Ding F, Sun W, et al. Electrochimica Acta, 2015, 174,230.
11 Ahmad Y, Dubois M, Guérin K, et al. Carbon, 2015, 94,1061.
12 Lam P, Yazami R. Journal of Power Sources, 2006, 153(2), 354.
13 Li Y. Journal of Power Sources, 2011, 196,2246.
14 Lu L, Andela P, Hosson J T M D, et al. ACS Applied Nano Materials, 2018, 1(5), 2206.
15 Tian Yanyan,Yue Hongjun, Gong Zhengliang, et al. Electrochimica Acta,2013, 90,186.
16 Lu Zhenming, Zhao Donglin, Liu Yunfang, et al. Transactions of Mate-rials and Heat Treatment, 2005, 26(6),9(in Chinese).
卢振明, 赵东林, 刘云芳,等.材料热处理学报, 2005, 26(6),9.
17 Jayasinghe R, Thapa A K, Dharmasena R R, et al. Journal of Power Sources, 2014, 253(5),404.
18 Wang L, Yang C, Dou S, et al. Electrochimica Acta, 2016, 219,592.
19 Luo Y, Luo N, Kong W, et al. Small, 2018, 14(8),1702853.
20 Ayasinghe R, Thapa A K, Dharmasena R R, et al.Journal of Power Sources, 2014, 253(5),404.
21 Tao H, Mukoyama D, Nara H, et al. Journal of Power Sources, 2013, 222(2),442.
22 Yan Cui ,Zhao Xiaoli, Guo Ruisong. Electrochimica Acta, 2010,55,922.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[3] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[4] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[5] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[6] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[7] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[8] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[9] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[10] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[11] 金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
[12] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[13] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[14] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[15] 王佳员, 王运, 杜保保, 王吟, 张晓东. 镁改性蒙脱土/纤维素复合凝胶的制备及对磷酸盐的吸附性能[J]. 材料导报, 2019, 33(12): 2076-2083.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed