Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2572-2581    https://doi.org/10.11896/cldb.18070045
  金属与金属基复合材料 |
Fe-Mn-Al-C系列低密度高强钢的研究现状
刘春泉1,2,彭其春1,2,薛正良1,2,吴腾1,2
1.武汉科技大学省部共建耐火材料与冶金国家重点实验室, 武汉 430081
2.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
Research Situation of Fe-Mn-Al-C System Low-density High-strength Steel
LIU Chunquan1,2, PENG Qichun1,2,XUE Zhengliang1,2, WU Teng1,2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 4650KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着节能环保和经济性的驱动,汽车轻量化已成为汽车行业的迫切需求,Fe-Mn-Al-C系列低密度高强钢因具有低密度与优异的力学性能而受到了学者们的关注。Fe-Mn-Al-C系列低密度钢的出现最早可以追溯到1933年,直到1958年,Fe-Mn-Al-C系列低密度钢才被用于取代Fe-Cr-Ni系列不锈钢(添加过多昂贵的Ni和Cr元素)。目前,Fe-Mn-Al-C系列低密度钢在汽车行业是一种具有高轻量化潜力的钢种,其中添加的Al元素会导致合金密度和杨氏模量的降低。每添加1%(质量分数)的Al,钢密度降低1.3%,杨氏模量降低2%。同时,大量Al、Mn和C元素的添加导致Fe-Mn-Al-C系列钢的冶炼和连铸、成形性和焊接性、微观结构演变和变形机制等与传统钢种大不相同。
Fe-Mn-Al-C系列低密度高强钢按合金的成分以及室温下主要的组成相,可分为四类:单一铁素体钢、铁素体基双相钢、奥氏体基双相钢和奥氏体钢。单一铁素体钢拥有200~600 MPa级别的抗拉强度,这与常规的高强度低合金钢(HSLA钢)类似,属于第一代先进高强度钢(1G-AHSS)范畴。铁素体基Fe-Mn-Al-C系双相钢是另一种有潜力的轻量化钢材,其具有较低的合金含量,可以利用铁素体的塑性变形以及残余奥氏体所产生的TRIP或TWIP效应来提高钢的强度与塑性。铁素体基Fe-Mn-Al-C系双相钢与第一代先进的高强度钢相比,具有更优异的强度和延展性,其性能的上限属于第三代先进高强度钢(3G-AHSS)范畴。奥氏体基双相钢与铁素体基双相钢类似,但其合金含量高于铁素体基双相钢,性能的下限属于第三代先进高强度钢(3G-AHSS)范畴。奥氏体Fe-Mn-Al-C系列钢在性能和加工方面是又一个有前途的钢材。奥氏体钢主要组成相为奥氏体、少量的铁素体和κ型碳化物。奥氏体钢的力学性能由奥氏体的变形以及碳化物-奥氏体的相互作用共同决定。奥氏体轻钢的拉伸性能与高锰TWIP钢相似,强度为600~1 500 MPa,塑性可达到30%~80%(甚至可达~100%),属于第二代先进高强度钢(2G-AHSS)范畴。
随着钢中Al的添加,Fe-Mn-Al-C系列低密度高强钢层错能(SFE)增大,并析出短程有序(SRO)相和κ型碳化物。高SFE的低密度Fe-Mn-Al-C钢具有多种变形机制,如新型的微带诱导塑性(MBIP)、动态滑移带细化(DSBR)和剪切带诱导塑性(SIP)变形机制以及普遍的相变诱导塑性(TRIP)和孪生诱发塑性(TWIP)变形机制。这些变形机制与Fe-Mn-Al-C钢内的B2及DO3型的有序相、均匀排列的纳米级κ型碳化物、位错滑移、孪晶和相变等有关。其中晶粒内κ′-碳化物析出是含有大量Al和C的奥氏体Fe-Mn-Al-C钢独特的强化机制。
然而,由于目前对Fe-Mn-Al-C钢应用性能相关知识的缺乏,其在汽车中的应用仍然不普遍。最重要的原因是这一系列低密度高强钢具有高的Al含量导致其杨氏模量降低,以及高的Mn含量导致其冶炼、连铸和加工难等问题。因此,未来的发展必须集中在提高低密度高强钢的杨氏模量,且将其低合金化和易加工的策略方法上。相信改进后的Fe-Mn-Al-C体系低密度高强钢必将大大推动其在汽车中的应用。
本文概述了Fe-Mn-Al-C体系低密度高强钢的研究现状及进展,介绍了Fe-Mn-Al-C体系低密度高强钢的成分设计及其中合金元素的作用,分析了Fe-Mn-Al-C体系低密度高强钢的微观组织特征,揭示了Fe-Mn-Al-C体系低密度高强钢的强韧性形成机理、层错能、物理及力学性能,并讨论了Fe-Mn-Al-C体系低密度高强钢的应用性能。最后,提出了未来Fe-Mn-Al-C体系低密度高强钢的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春泉
彭其春
薛正良
吴腾
关键词:  低密度钢  变形机制  κ型碳化物  应用性能    
Abstract: The lightweight of automobile has become more and more widely concerned with the needs of energy conservation, environmental protection and economy. The low density and high strength steel of the Fe-Mn-Al-C system combines the low density and excellent mechanical properties, which complies with this topic.The earliest information on low-density steels dates back to 1933 which was related to the first development of Fe-Mn-Al-C system.Until 1958, the Fe-Mn-Al-C system of low-density steel was developed to replace the Fe-Cr-Ni system of stainless steels (added too many expensive Ni and Cr elements).At present, the Fe-Mn-Al-C system low-density steel is a kind of steel with high lightweight potential in the automotive industry, in which the addition of Al element leads to a decrease in density and Young’s modulus. Adding 1wt% Al, the steel density is reduced by 1.3%, and the Young’s modulus is reduced by 2%. Simultaneously,the addition of a large amount of Al,Mn and C elements resulted in the smelting, continuous casting, formability, weldability, microstructure evolution and deformation mechanism of Fe-Mn-Al-C system steels, which are quite different from those of traditional steels.
The lightweight Fe-Mn-Al-C system steel can be classified into four categories: single ferritic steels,ferrite based duplex steels, austenite based duplex steels and austenitic steels, according to the composition of the alloy and the main composition phase of room temperature.The single ferritic steel has similar tensile properties of 200—600 MPa as the conventional high-strength low-alloy steel (HSLA) and belongs to the first generation of advanced high-strength steel (1G-AHSS).Ferrite-based Fe-Mn-Al-C system duplex steels are another promising lightweighting scheme with a lower alloy content that can be produced using ferrite plastic deformation and retained austenite TRIP and TWIP effect to increase steel strength and plasticity.The ferrite based Fe-Mn-Al-C double phase steel has superior strength and ductility compared with the first advanced high strength steel, and the middle and upper level of their performance belongs to the category of the third generation advanced high-strength steel (3G-AHSS).The austenitic-based duplex steel is similar to ferritic-based duplex steel, but it has higher alloy content than ferritic-based dual-phase steel, and its lower limit of performance belongs to the 3G-AHSS category.The austenitic steels are the most promising in terms of properties and processing.The main constituent phases of austenitic steel are austenite, a small amount of ferrite and κ-carbide.The mechanical properties of austenitic steels are determined by the deformation of austenite and the interaction of carbide-austenite.The tensile properties of austenitic light steel are similar to those of high manganese TWIP steel, the strength of 600—1 500 MPa and the plasticity can reach of 30%—80% (even up to ~100%), it belongs to the category of the second generation advanced high strength steel (2G-AHSS).
The stacking fault energy (SFE) of Fe-Mn-Al-C system low-density high-strength steel increases and short-range ordered (SRO) phase and κ-type carbide are precipitated with the addition of Al content in steel.High-SFE low-density Fe-Mn-Al-C system steel with various deformation mechanisms such as novel microband induced plasticity (MBIP), dynamic slip band refinement (DSBR), shear band induced plasticity (SIP) deformation mechanism, transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) deformation mechanisms.These deformation mechanisms are consistent with the B2 and DO3 type of ordered phases, uniformly arrange of the intragranular nano-sized κ-carbides, dislocation slips, twins and phase transitions.The precipitation of intragranular κ-carbide is a unique strengthening mechanism of austenitic Fe-Mn-Al-C steel containing a large amount of Al and C elements.
The applications of the Fe-Mn-Al-C system steels in the automobiles are still not prevalent due to the lack of knowledge related to application properties so far.The most important reason is that high Al content leads to high Young’s modulus reduction and high Mn content leads to problems such as smelting, continuous casting, and machining.The future developments will therefore have to concentrate on the alloying and processing strategies and also on the methods to increase the Young’s modulus. An improved processing strategy and a high value for the Young’s modulus will go a long way towards upscaling these steels to real automotive applications.
The fundamental research situation and devoment of Fe-Mn-Al-C low-density high-strength steel were summarized.The composition design and the role of alloying elementsof Fe-Mn-Al-C low-density high-strength steel were introduced.The microstructures of Fe-Mn-Al-C low density high strength steel were analyzed.The mechanism of formation of toughness and toughness, stacking fault energy, physical and mechanical properties of Fe-Mn-Al-C series low density and high strength steels were revealed, and the application properties of Fe-Mn-Al-C alloys were discussed.Finally, some future directions of research on Fe-Mn-Al-C system low density steels have been proposed.
Key words:  low-density steels    deformation mechanisms    κ-carbide    application performance
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG355  
基金资助: 国家自然科学基金(51404173);省部共建耐火材料与冶金国家重点实验室青年基金项目(2018QN07)
作者简介:  刘春泉,2015年6月毕业于湖南工业大学,获得工学学士学位。现为武汉科技大学材料与冶金学院博士研究生,在彭其春教授(副导师)及薛正良教授(导师)的共同指导下进行研究。目前主要研究领域为第三代汽车用先进高强塑性中锰钢组织与性能。
彭其春,武汉科技大学材料与冶金学院教授。1987年6月本科毕业于武汉科技大学材料与冶金学院,2002年4月在北京科技大学冶金工程系取得博士学位。主要研究领域包括:钢种开发成套技术、铸坯与轧材质量缺陷控制与解决方案、冶金过程预测控制软件与服务、新型辅助原材料研发。获国家发明专利3项,实用新型专利3项;发表论文100余篇,其中被SCI、EI和ISTP收录13篇;负责纵向和横向课题共30余项,实到横向科研经费600余万元。
引用本文:    
刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
LIU Chunquan, PENG Qichun,XUE Zhengliang, WU Teng. Research Situation of Fe-Mn-Al-C System Low-density High-strength Steel. Materials Reports, 2019, 33(15): 2572-2581.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070045  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2572
[1] Pan E B, Di H S, Jiang G W, et al. Acta Metallurgica Sinica(English Letters),2014,27(3),469.
[2] Chen L Q, Zhao Y, Qin X M. Acta Metallurgica Sinica (English Letters),2013,26(1),1.
[3] Liu C Q, Peng Q C, Deng M M, et al. Journal of Iron and Steel Research, International,2017,29(6),431(in Chinese).
刘春泉,彭其春,邓明明,等.钢铁研究学报,2017,29(6),431.
[4] Howell R A, Van Aken D C. Iron &Steel Technology,2009,6(4),193.
[5] Kim H, Suh D W, Kim N J. Science & Technology of Advanced Materials,2013,14(1),1.
[6] Suh D W, Kim N J. Scripta Materialia,2013,68(6),337.
[7] Rana R. JOM,2014,66(9),1730.
[8] Frommeyer G, Brüx U. Steel Research International,2006,77(9-10),627.
[9] Kalashnikov I S, Acselrad O, Pereira L C. Journal of Materials Enginee-ring & Performance,2000,9(6),597.
[10] Sutou Y, Kamiya N, Umino R, et al. ISIJ International,2010,50(6),893.
[11] Raabe D, Springer H, Gutierrez-Urrutia I, et al. JOM,2014,66(9),1845.
[12] Jahn M T, Chang S C, Hsiao Y H. Journal of Materials Science Letters,1989,8(6),723.
[13] Kalashnikov I S, Acselrad O, Pereira L C, et al. Journal of Materials Engineering and Performance,2000,9(3),334.
[14] Jackson P R S, Wallwork G R. Oxidation of Metals,1984,21(3-4),135.
[15] Kao C H, Wan C M. Journal of Materials Science,1988,23(6),894.
[16] Zhang L F, Song R B, Zhao C, et al. Materials Review A: Review Papers,2014,28(10),111(in Chinese).
张磊峰,宋仁伯,赵超,等.材料导报:综述篇,2014,28(10),111.
[17] Yang Q, Wang J F, Cong Y, et al. Baosteel Technology,2015(3),1(in Chinese).
杨旗,王俊峰,丛郁,等.宝钢技术,2015(3),1.
[18] Yang Q, Wang J F, Cong Y, et al. Baosteel Technology,2015(4),1(in Chinese).
杨旗,丛郁,王俊峰,等.宝钢技术,2015(4),1.
[19] Zhang X F, Yang H, et al. World Metal,2017,10,1.
[20] Kim S H, Kim H, Kim N J. Nature,2015,518(7537),77.
[21] Herrmann J, Inden G, Sauthoff G. Acta Materialia,2003,51(11),3233.
[22] Morris D G, Munoz-Morris M G, Requejo L M. Materials Science & Engineering: A,2007,460(1),163.
[23] Schneider A, Falat L, Sauthoff G, et al. Intermetallics,2003,11,443.
[24] Castan C, Montheillet F, Perlade A. Scripta Materialia,2013,68(6),360.
[25] Rana R, Liu C, Ray RK. Scripta Materialia,2013,68(6),354.
[26] Brüx U, Frommeyer G, Jimenez J. Steel Research,2002,73(12),543.
[27] Zargaran A, Kim H, Kwak J H, et al. Scripta Materialia,2014,89(3),37.
[28] Rana R, Liu C, Ray R K. Acta Materialia,2014,75(16),227.
[29] Han S Y, Shin S Y, Lee S, et al. Metallurgical & Materials Transactions Part A,2010,42(1),138.
[30] Sohn S S, Lee B J, Lee S, Kwak J H. Metallurgical & Materials Transactions A,2014,45(12),5469.
[31] Lee S, Jeong J, Lee Y K. Journal of Alloys & Compounds,2015,648,149.
[32] Cai Z H, Ding H, Ying Z, Misra R D K. Journal of Materials Enginee-ring & Performance,2014,23(4),1131.
[33] Sohn S S, Song H, Kim J G, et al. Metallurgical & Materials Transactions A,2015,47(2),706.
[34] Sohn S S, Song H, Suh B C, et al. Acta Materialia,2015,96,301.
[35] Yang M X, Yuan F P, Xie Q G, et al. Acta Materialia,2016,109,213.
[36] Yang F, Song R, Li Y, et al. Materials & Design,2015,76,32.
[37] Zhang L, Song R, Zhao C, et al. Materials Science & Engineering A,2015,640,225.
[38] Zhao C, Song R, Zhang L, et al. Materials & Design.2016,91,348.
[39] Zhang L, Song R, Zhao C, et al. Materials Science & Engineering A,2015,643,183.
[40] Jung I C, Cho L, De Cooman B C. ISIJ International,2015,55(4),870.
[41] Park K T. Scripta Materialia,2013,68(6),375.
[42] Lin C L, Chao C G, Juang J Y, et al. Journal of Alloys & Compounds,2014,586(4),616.
[43] Gutierrez-Urrutia I, Raabe D. Materials Science & Technology.2014,30(9),1099.
[44] Welsch E, Ponge D, Hafez Haghighat S M, et al. Acta Materialia,2016,116,188.
[45] Choi K, Seo C H, Lee H, et al. Acta Materialia,2010(10),63,1028.
[46] Cai Z H, Cai B, Ding H, et al. Materials Science & Engineering A,2016,676(31),263.
[47] Cai Z H, Ding H, Xue X, et al. Materials Science & Engineering A,2013,560(10),388.
[48] Shao C, Hui W, Zhang Y, et al. Materials Science & Engineering A,2017,682(13),45.
[49] Sohn S S, Lee B J, Lee S, et a1. Aeta Materialia,2013,61(13),5050.
[50] Chin K G, Kang C Y, Shin S Y, et a1. Materials Science & Engineering A,2011,528(6),2922.
[51] Ryu J H, Kim D I, Kim H S, et al. Scripta Materialia,2010,63(3),297.
[52] Sang Y S, Lee H, Han S Y, et al. Metallurgical & Materials Transactions A,2010,41(1),138.
[53] Sohn S S, Lee B J, Lee S, et al. Acta Materialia,2013,61(13),5050.
[54] Wu Z Q, Ding H, Li H Y, et al. Materials Science & Engineering A,2013,584(9),150.
[55] Bartlett L, Aken D V. JOM,2014,66(9),1770.
[56] Yang F Q, Song R B, Li Y P, et al. Chinese Journal of Materials Research,2015,29(2),108(in Chinese).
杨富强,宋仁伯,李亚萍,等.材料研究学报,2015,29(2),108.
[57] Acselrad O, Kalashnikov I, Silva E, et a1. Metal Science & Heat Treatment,2006,48(11-12),543.
[58] Kimura Y, Handa K, Hayashi K, et al. Intermetallics,2004,12(6),607.
[59] Bartlett L, Van Aken D, Medvedeva J, et a1. Metallurgical and Materials Transactions A,2014,45(5),2421.
[60] Cheng WC. JOM,2014,66,1809.
[61] Hsuan T Y, Lin C L, Chao C G, Liu T F. Materials Transactions,2008,49(7),1589.
[62] Cheng W C, Song Y S, Lin Y S, Chen K F. Metallurgical and Materials Transactions A,2014,45(3),1199.
[63] Huang H, Gan D, Kao P W. Scripta Metallurgical and Materials,1994,30,499.
[64] Li M C, Chang H, Kao P W, et al. Materials Chemistry and Physics,1999,59(1),96.
[65] Stoloff N S. Materials Science and Engineering: A,1998,258(1-2),1.
[66] Yoo J D, Park K T. Materials Science & Engineering: A,2008,496(1-2),417.
[67] Yoo J D, Hwang S W, Park K T. Metallurgical & Materials Transactions A,2009,40(7),1520.
[68] Frommeyer G, Drewes E J. Revue De Métallurgie-International Journal of Metallurgy,2002,97(10),1245.
[69] Bohnenkamp U, Sandstr?m R. Steel Research,2000,71(10),88.
[70] Chen S, Rana R, Haldar A, et al. Progress in Materials Science,2017,89,345.
[71] Chang S C, Hsiau Y H, Jahn M T. Journal of Materials Science,1989,24(3),1117.
[72] Ho N J, Tjong S C. Materials Science & Engineering A,1987,94,195.
[73] Ho N J, Wu L T, Tjong S C. Materials Science & Engineering A,1988,102,49.
[74] Chu W Y, Qiao L J, Li J X. Hydrogen embrittlement and stress corrosion, 1nd Ed, Science Press, China,2013(in Chinese).
褚武扬,乔利杰,李金许.氢脆和应力腐蚀,第1版,科学出版社,2013.
[75] Ryu Joo Hyun. Hydrogen Embrittlement in TRIP and TWIP Steel. Dissertation, Pohang University of Science and Technology, South Korea,2012.
[76] Dieudonné T, Marchetti L, Wery M, et al. Corrosion Science,2014,82(2),218.
[77] Wang C S, Tsai C Y, Chao C G, et al. Materials Transactions,2007,48(11),2973.
[78] Tuan Y H, Wang C S, Tsai C Y, et al. Materials Chemistry and Physics,2009,114(2-3),595.
[79] Ku J S, Ho N J, Tjong S C. Journal of Materials Science,1993,28(10),2808.
[1] 章小峰, 杨浩, 李家星, 阚中伟, 施琦, 黄贞益. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报, 2018, 32(16): 2859-2864.
[2] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[3] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[4] 魏力民, 杨权, 程义, 谭舒平. Ni-25Cr-20Co合金时效组织结构及性能研究[J]. 《材料导报》期刊社, 2017, 31(16): 107-111.
[5] 王 彤, 鲍 艳. 功能型聚丙烯酸酯/无机纳米复合皮革涂饰剂的研究进展[J]. 材料导报, 2017, 31(1): 64-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed