Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2859-2864    https://doi.org/10.11896/j.issn.1005-023X.2018.16.029
  金属与金属基复合材料 |
基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型
章小峰, 杨浩, 李家星, 阚中伟, 施琦, 黄贞益
安徽工业大学冶金工程学院,马鞍山 243002
The Stacking Fault Energy (SFE) Calculation Model for Fe-Mn-Al-C Low-density Steels Based on Thermodynamics Theory
ZHANG Xiaofeng, YANG Hao, LI Jiaxing, KAN Zhongwei, SHI Qi, HUANG Zhenyi
School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002
下载:  全 文 ( PDF ) ( 2356KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究详细分析了基于热力学相关理论建立的层错能(SFE)计算模型和测定层错能的实验方法,将基于Olson-Cohen热力学理论模型计算的Fe-Mn-Al-C低密度高强钢的层错能结果与若干文献中的实测值进行了比较,验证了Olson-Cohen热力学理论模型的可靠性,并回溯和修正了模型中各主要参数。使用层错能模型对Fe-(10~30)Mn-(0~12)Al-(0~1.2)C(质量分数/%)系低密度钢进行计算,结果表明,Mn、Al、C含量的增加均会使低密度钢的层错能增加,但层错能对Al元素最敏感,各元素对层错能的影响能力为γSFE,AlSFE,MnSFE,C。此外,温度升高会使层错能增加,且高温区间(300~1 000 K)相比低温区间(0~300 K)层错能增加更快。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章小峰
杨浩
李家星
阚中伟
施琦
黄贞益
关键词:  低密度钢  层错能(SFE)  Olson-Cohen模型  成分  温度    
Abstract: The present work aimed to find an appropriate calculation model for the stacking fault energy (SFE) of Fe-Mn-Al-C low-density steels so as to facilitate the relevant research upon the SFE of this representative species of high-strength steel. We discussed and depicted the SFE calculation model established based on the pertinent thermodynamics theory and the experimental met-hods for determining SFE. Based on the Olson-Cohen thermodynamics model, we then calculated the SFE of some Fe-Mn-Al-C steels which had been determined in previous works to evaluate the reliability of Olson-Cohen model, and subsequently carried out the inverse correction for main parameters in the model. The computer-assisted theoretical calculation results of the SFE for the series of Fe-(10-30)Mn-(0-12)Al-(0-1.2)C (wt%) low-density steels showed that more Mn, Al or C elements will all lead to larger SFE. SFE’s sensitivity toward Al is the highest and the influence of various elements are γSFE,AlSFE,MnSFE,C. In addition, under high temperature range (300-1 000 K) the SFE increases at a higher rate compared with low temperature range (0-300 K).
Key words:  low-density steel    stacking fault energy (SFE)    Olson-Cohen model    composition    temperature
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG335.3  
基金资助: 中国博士后科学基金(2014M561648);国家自然科学基金(51674004);安徽省高校自然科学研究项目(KJ2016A104)
作者简介:  章小峰:男,1975年生,副教授,硕士研究生导师,主要研究先进汽车钢组织性能控制 E-mail:egzxf@ahut.edu.cn
引用本文:    
章小峰, 杨浩, 李家星, 阚中伟, 施琦, 黄贞益. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报, 2018, 32(16): 2859-2864.
ZHANG Xiaofeng, YANG Hao, LI Jiaxing, KAN Zhongwei, SHI Qi, HUANG Zhenyi. The Stacking Fault Energy (SFE) Calculation Model for Fe-Mn-Al-C Low-density Steels Based on Thermodynamics Theory. Materials Reports, 2018, 32(16): 2859-2864.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.029  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2859
1 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International,2006,77(9):627.
2 Stout Y J, Kamiya N, Umino R. High-strength Fe-20Mn-Al-C-based alloys with low density[J]. ISIJ International,2010,50(6):893.
3 Chen P C, Chao C G, Liu T F. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy[J]. Scripta Materialia,2013,68(6):380.
4 章小峰,杨浩,阚中伟,等.国内外高强韧性低密度钢的研发进展[N].世界金属导报,2017-05-16(B10).
5 Feng Z X, Zhang X Y, Pan F S. Thermodynamic model for the influence of temperature on the stacking fault energy in hcp metals[J]. Rare Metal Materials and Engineering,2012,41 (9):1638(in Chinese).
冯中学,张喜燕,潘复生.温度对六方系金属层错能影响的热力学模型[J].稀有金属材料与工程,2012,41(9):1638.
6 Medvedeva N I, Park M S, Van Aken D C. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe[J]. Journal of Alloys and Compounds,2014,582(2):475.
7 Dieter G E. Mechanical metallurgy[M]. Berlin: Springer,1993.
8 Lan P, Song L N, Du C W, et al. Research progress on stacking fault energy in high manganese TWIP steel[J]. Journal of Iron and Steel Research,2015,27(1):1(in Chinese).
兰鹏,宋丽娜,杜辰伟,等.高锰TWIP钢层错能的研究进展[J].钢铁研究学报,2015,27(1):1.
9 Xiong R L, Peng H B, Si H T, et al. Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels[J]. Materials Science and Engineering A,2014,598(598):376.
10 Gallagher P C J. The influence of alloying, temperature, and related effects on the stacking fault energy[J]. Metallurgical Transactions,1970,1(9):2429.
11 Nakano J, Jacques P J. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. Calphad-computer Coupling of Phase Diagrams and Thermochemistry,2010,34(2):167.
12 Ferreira P J, Müllner P. A thermodynamic model for the stacking-fault energy[J]. Acta Materialia,1998,46(13):4479.
13 Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys[J]. Journal of Materials Science,2008,43(18):6214.
14 Yang W S, Wan C M. The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system[J]. Journal of Materials Science,1990,25(3):1821.
15 Olson G B, Cohen M. A general mechanism of martensitic nucleation—Part Ⅰ: General concepts and the FCC→HCP transformation[J]. Metallurgical and Mate-rials Transactions A,1976,7(12):1897.
16 Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Materialia,2011,59(3):1068.
17 Zhang X F, Leng D P, Zhang L, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels[J]. Transactions of Materials and Heat Treatment,2015,36(12):128(in Chinese).
章小峰,冷德平,张龙,等.Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响[J].材料热处理学报,2015,36(12):128.
18 Tian X, Zhang Y S. Effect of Aluminum, Chromium and Silicon on the lattice parameter for Fe-Mn-C austenite[J]. Materials Science Progress,1991,5(1):48(in Chinese).
田兴,张彦生.Al,Cr,Si对Fe-Mn-C奥氏体点阵参数的影响[J].材料科学进展,1991,5(1):48.
19 Dai Y J, Tang D, Mi Z L, et al. The influence of manganese on the stacking fault Energy and deformation mechanisms of the TWIP steel[J]. Journal of Materials Engineering,2009(7):39(in Chinese).
代永娟,唐荻,米振莉,等.锰元素对TWIP钢层错能和变形机制的影响[J].材料工程,2009(7):39.
20 Jeong J S, Woo W, Oh K H, et al. In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels[J]. Acta Materialia,2012,60(5):2290.
21 Kim J, Cooman B C D. On the stacking fault energy of Fe-18Pct Mn-0.6 Pct C-1.5 Pct Al twinning-induced plasticity steel[J]. Metallurgical and Materials Transactions A,2011,42(4):932.
22 Noskva R P, Pavlov V A.Stacking faults in nickel solid solutions[J]. The Physics of Metals and Metallography,1962,14(6):86
23 Reed R P, Schramm R E. Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain[J]. Journal of Applied Physics,1974,45(11):4705.
24 Zambrano O A. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: Effect of temperature, grain size, and variations in compositions[J]. Journal of Engineering Materials and Technology,2016,138(4):041010.
25 Jin J E, Lee Y K. Effects of Al on microstructure and tensile pro-perties of C-bearing high Mn TWIP steel[J]. Acta Materialia,2012,60(4):1680.
26 Kim J, Lee S J, Cooman B C D. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity[J]. Scripta Materialia,2011,65(4):363.
27 Saeed A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels[J]. Metallurgical and Mate-rials Transactions A,2009,40(13):3076.
28 Das A. Revisiting stacking fault energy of steels[J]. Metallurgical and Materials Transactions A,2016,47(2):748.
29 Remy L, Pineau A. Twinning and strain-induced FCC→HCP transformation in the Fe-Mn-Cr-C system[J]. Materials Science and Engineering,1977,28(1):99.
30 Han Y S, Hong S H. The effect of Al on mechanical properties and microstructures of Fe-32Mn-12Cr-xAl-0.4C cryogenic alloys[J]. Materials Science and Engineering A,1997,222(1):76.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[4] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[5] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[6] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[7] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[8] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[9] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[10] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[11] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[12] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[13] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[14] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[15] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed