Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2437-2441    https://doi.org/10.11896/j.issn.1005-023X.2018.14.020
  金属与金属基复合材料 |
挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为
唐昌平1,2, 左国良1,2, 刘文辉1,2, 朱美韵1,2, 李志云3, 李权4, 刘筱1,2, 卢立伟1,2
1 湖南科技大学材料科学与工程学院,湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201;
3 株洲六零八所科技有限公司,株洲 412002;
4 重庆市科学技术研究院,重庆 401123
The Dynamic Impact Behavior of an Extruded and T5-tempered Mg-8Gd-4Y-Nd-Zr Alloy
TANG Changping1,2, ZUO Guoliang1,2, LIU Wenhui1,2, ZHU Meiyun1,2, LI Zhiyun3, LI Quan4, LIU Xiao1,2, LU Liwei1,2
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Science and Technology Company Limited of No.608 Research Institute, Zhuzhou 412002;
4 Chongqing Academy of Science and Technology, Chongqing 401123
下载:  全 文 ( PDF ) ( 5078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用分离式霍普金森压杆装置,结合硬度测试、金相观察、扫描电镜观察、透射电镜观察等手段,研究了挤压-T5态Mg-8Gd-4Y-Nd-Zr合金在不同应变速率条件下的动态冲击行为。结果表明:合金挤压-T5态具有优异的抗冲击性能,当应变速率为771 s-1时,其抗压强度可达502 MPa,与2519A铝合金的抗压强度相当;当应变速率为2 645 s-1时,合金的抗压强度可达682 MPa。在不同应变速率下,合金的主要断裂方式均为解理断裂,当应变速率低于1 244 s-1时,解理面之间以小尺寸浅平韧窝连接,当应变速率高于1 808 s-1时,冲击带来的绝热温升导致细晶区晶界弱化,出现沿晶断裂,形成网状组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
左国良
刘文辉
朱美韵
李志云
李权
刘筱
卢立伟
关键词:  Mg-8Gd-4Y-Nd-Zr合金  时效  动态冲击  断口分析  变形机制    
Abstract: The present work aimed to investigate the dynamic impact behavior of an extruded and T5-tempered Mg-8Gd-4Y-Nd-Zr alloy subjected to various strain rates by using the split Hopkinson pressure bar, hardness test, optical microscopy, scanning electron microscopy and transmission electron microscopy. Our experiment confirmed the excellent impact resistance of this extruded-T5 tempered alloy, as it exhibited the compressive strengths of 502 MPa and 682 MPa, the former of which is equivalent to 2519A aluminum alloy, when the strain rates were 771 s-1 and 2 645 s-1, respectively. It can also be concluded that the cleavage fracture is the main fracture mode of the alloy under different strain rates. A strain rate below 1 244 s-1 will result in the connection of the cleavage planes through small-sized shallow dimples, while a strain rate higher than 1 808 s-1 can lead to the intergranular fracture in fine grain region involved by grain boundary weakening, a consequence of the adiabatic temperature rise during dynamic compression, and thereby, trigger the formation of network structure.
Key words:  Mg-8Gd-4Y-Nd-Zr alloy    aging    dynamic impact    fracture analysis    deformation mechanism
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51605159;51601062);湖南省自然科学基金(2016JJ5042);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0301)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
TANG Changping, ZUO Guoliang, LIU Wenhui, ZHU Meiyun, LI Zhiyun, LI Quan, LIU Xiao, LU Liwei. The Dynamic Impact Behavior of an Extruded and T5-tempered Mg-8Gd-4Y-Nd-Zr Alloy. Materials Reports, 2018, 32(14): 2437-2441.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.020  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2437
1 Cai H N, Tan C W, Wang F C, et al. The characterization system of the ballistic performance of armor magnesium alloys[J]. Engineering Science,2006,8(2):30(in Chinese).
才鸿年,谭成文,王富耻,等.装甲用镁合金抗弹性能表征体系探讨[J].中国工程科学,2006,8(2):30.
2 Wu Y P, Zhang X M, Deng Y L, et al. Effect of secondary extrusion on the microstructure and mechanical properties of a Mg-RE alloy[J]. Materials Science and Engineering: A,2014,616:148.
3 Wu Y P, Zhang X M, Deng Y L, et al. Effect of compression conditions on the microstructure and texture of a Mg-RE alloy[J]. Materials Science and Engineering: A,2015,644:152.
4 Xie H M, Jiang B, He J J, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International,2016,93:63.
5 Li Y X, Wang J, Chen K G, et al. Self-patterning Gd nano-fibers in Mg-Gd alloys[J]. Scientific Reports,2016,6:1.
6 Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys[J]. Journal of Materials Science & Technology,2017,34(2):245.
7 Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scripta Materialia,2009,61(6):644.
8 Wang J F, Song P F, Huang S, et al. High-strength and good-ductility Mg-RE-Zn-Mn magnesium alloy with long-period stacking ordered phase[J]. Materials Letters,2013,93:415.
9 Zhang X M, Wang W T, Liu B, et al. Effect of Nd addition on microstructures and heat-resisting properties of 2519 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2009,19(1):15(in Chinese).
张新明,王文韬,刘波,等.Nd 对2519铝合金组织与耐热性能的影响[J].中国有色金属学报,2009,19(1):15.
10 Gu G, Ye L Y, Jiang H C, et al. Effects of T9I6 thermo-mechanical process on microstructure, mechanical properties and ballistic resis-tance of 2519A aluminum alloy[J]. Transactions of Nonferrous Me-tals Society of China,2014,24(7):2295.
11 Zhang F, Tan C W, Yu X D, et al. Influence of strain rate on fracture mechanism of Mg-Gd-Y alloy[J]. Chinese Journal of Rare Me-tals,2011,35(5):662(in Chinese).
张帆,谭成文,于晓东,等.应变率对Mg-Gd-Y合金断裂机制的影响[J].稀有金属,2011,35(5):662.
12 Mao P L, Yu J C, Liu Z, et al. Dynamic mechanical property and failure behavior of extruded Mg-Gd-Y alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals,2013,23(4):889(in Chinese).
毛萍莉,于金程,刘正,等.挤压态Mg-Gd-Y镁合金动态压缩力学性能与失效行为[J].中国有色金属学报,2013,23(4):889.
13 Mao P L, Yu J C, Liu Z, et al. Microstructure evolution of extruded Mg-Gd-Y magnesium alloy under dynamic compression[J]. Journal of Magnesium and Alloys,2013,1(1):64.
14 Yu J C, Liu Z, Dong Y, et al. Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates[J]. Journal of Magnesium and Alloys,2015,3(2):134.
15 He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J]. Journal of Alloys and Compounds,2007,427(1-2):316.
16 Tang C P, Liu W H, Chen Y Q, et al. Effects of thermal treatment on microstructure and mechanical properties of a Mg-Gd-based alloy plate[J]. Materials Science and Engineering: A,2016,659:63.
17 Xiao H C, Tang B, Liu C M, et al. Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression[J]. Materials Science and Engineering: A,2015,645:241.
18 Zhang F, Zhang K X, Tan C W, et al. Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy processed by equal channel angular pressing[J]. Transactions of Nonferrous Metals Society of China,2011,21(10):2140.
19 Gao Z G, Zhang X M, Chen M A, et al. Effect of temperature on dynamic yield stress and microstructure of 2519A aluminum alloy at high strain rate[J]. Rare Metal Materials and Engineering,2009,38(5):881(in Chinese).
高志国,张新明,陈明安,等.温度对2519A铝合金高应变速率下动态屈服应力及显微组织的影响[J].稀有金属材料与工程,2009,38(5):881.
20 Kovács Z, Chinh N Q, Lendvai J, et al. Portevin-Le Chatelier type plastic instabilities in depth sensing macro-indentation[J]. Materials Science and Engineering: A,2002,325(1):255.
21 彭大暑. 塑性加工原理[M]. 长沙:中南大学出版社,2014:142.
[1] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[5] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[6] 方文, 王海宾, 张朝磊, 王宏斌, 马晓艺. 预应力钢绞线用大规格82B盘条冬季时效期的系统控制[J]. 材料导报, 2019, 33(14): 2408-2412.
[7] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[8] 安小雪, 李勇, 王福, 王昭东, 邸洪双. 气垫式预时效工艺对6016铝合金汽车板性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1300-1305.
[9] 唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
[10] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[11] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[12] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[13] 贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
[14] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[15] 周天国, 陈田田, 苏鑫, 徐瑞, 吴晓玉, 胡静. 多道次ECAE动态成型Al-Mg-Si合金导线组织与性能*[J]. 《材料导报》期刊社, 2017, 31(8): 17-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed