Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4292-4296    https://doi.org/10.11896/j.issn.1005-023X.2018.24.015
  金属与金属基复合材料 |
时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响
刘磊1,2, 周海涛1, 周楠2, 农登2, 王顺成2
1 中南大学材料科学与工程学院,长沙 410083;
2 广东省材料与加工研究所,广州 510650
Aging Duration Dependence and Aging Temperature Dependence of Microstructure and Properties of Al-6Zn-1.1Mg Alloy
LIU Lei1,2, ZHOU Haitao1, ZHOU Nan2, NONG Deng2, WANG Shuncheng2
1 School of Materials Science and Engineering, Central South University, Changsha 410083;
2 Guangdong Institute of Materials and Processing, Guangzhou 510650
下载:  全 文 ( PDF ) ( 2035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用维氏硬度仪、透射电镜、拉伸试验机和电导率测量仪,研究了时效温度和时间对新型Al-6Zn-1.1Mg合金组织与性能的影响。结果表明:随着时效时间的延长,Al-6Zn-1.1Mg合金基体中先后沉淀析出GP区、η′相(亚稳相MgZn2)和η相(稳定相MgZn2)。GP区和η′相均可阻碍位错运动,对合金起到很好的强化作用。当GP区的数量达到最多时,合金的强度和硬度达到第一个峰值。当GP区转变为η′相时,合金的强度和硬度达到第二个峰值。当η′相转变为η相后,合金的强度和硬度开始出现下降。随着时效温度的升高,GP区、η′相和η相的析出逐渐加快,使合金强度和硬度达到两个峰值的时间逐渐缩短,并且两个峰值之间的时间间隔也逐渐缩短。时效温度为120 ℃时,合金强度和硬度的第二峰值高于第一峰值。当时效温度高于120 ℃时,合金强度和硬度的第二峰值低于第一峰值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘磊
周海涛
周楠
农登
王顺成
关键词:  手机外壳  7xxx系铝合金 Al-Zn-Mg合金  时效  强化  电导率    
Abstract: The effects of aging temperature and duration on the microstructure evolution and properties of the new Al-6Zn-1.1Mg alloy were determined and investigated by using hardness tester, transmission electron microscope (TEM), tensile tester and conductivity tester. The results indicated that with the increase of aging duration, the GP zone, η′ phase (metastable MgZn2) and η phase (stable MgZn2) precipitate in turn from the Al-6Zn-1.1Mg alloy. The GP zone and η′ phase can hinder the movement of dislocations and consequently strengthen the alloy. When the number of GP zone reaches the maximum, the first peak values of alloy’s strength and hardness can be obtained. And the transformation of GP zone into η′ phase causes the alloy’s strength and hardness to reach the second peak values. Moreover, while the η′ phase is transformed into η phase, the strength and hardness of the alloy begin to decline. With the increase of aging temperature, the precipitations of GP zone, η′ phase and η phase are gradually accelerated, resulting in less time consumptions of the alloy’s strength and hardness to reach both of the first and second peaks, as well as shorter time interval between the two peaks. In addition, we also observed the higher second peak values (compared with the first peak va-lues) of strength and hardness at an aging temperature of 120 ℃, and the higher first peak values (compared with the second peak values) of strength and hardness at aging temperatures higher than 120 ℃.
Key words:  mobile casing    7xxx aluminum alloy    Al-Zn-Mg alloy    aging    strengthening    conductivity
                    发布日期:  2019-01-23
ZTFLH:  TG146.21  
基金资助: 广东省科技计划项目(2015B090901044;2014B090907008);中山市科技计划项目(2016A1001;2017C1007)
通讯作者:  周海涛:通信作者,教授,主要研究有色金属的加工性能 E-mail:htzhou@csu.edu.cn   
作者简介:  刘磊:男,1993年生,硕士研究生,主要研究铝合金的时效工艺和焊接性能 E-mail:997113503@qq.com
引用本文:    
刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
LIU Lei, ZHOU Haitao, ZHOU Nan, NONG Deng, WANG Shuncheng. Aging Duration Dependence and Aging Temperature Dependence of Microstructure and Properties of Al-6Zn-1.1Mg Alloy. Materials Reports, 2018, 32(24): 4292-4296.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.015  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4292
1 王祝堂.手机机身铝合金新说(上)[N].中国有色金属报,2016-5-5(3).
2 王祝堂.手机机身铝合金新说(下)[N].中国有色金属报,2016-5-12(3).
3 Wang K S, Chen Y Z, Han Y, et al. Technology and optimization of cold extrusion drawing compound forming of aluminum alloy mobile phone shell[J].Journal of Plasticity Engineering,2015,22(4):30(in Chinese).
王可胜,陈勇章,韩豫,等.铝合金手机壳冷挤压拉深复合成形工艺及优化[J].塑性工程学报,2015,22(4):30.
4 Tanner D A, Robinson J S. Residual stress magnitudes and related properties in quenched aluminiumalloys[J].Materials Science and Technology,2006,22(1):77.
5 Fang H C, Chen K H, Chao H, et al. Nest macros, Al-Zn-Mg-Cu super aluminum alloy the research status and prospect of powder [J].Metallurgy Materials Science and Engineering,2009,14(6):351(in Chinese).
方华蝉,陈康华,巢宏,等.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J].粉末冶金材料科学与工程,2009,14(6):351.
6 Liu B, Peng C Q, Gong R C, et al. Early days, current situation and prospect of large aircraft aluminum alloy chinese[J].Journal of Nonferrous Metals,2010,20(9):1705(in Chinese).
刘兵,彭超群,工日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705.
7 Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J].Corrosion Science,2007,49(3):1437.
8 Baydogan M, Cimenoglu H, Kayali E S, et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets[J].Metallurgical and Materials Transactions A,2008,39(10):2470.
9 Wu Y, Wen T, Zhu C T. 7xxx current situation and development aluminum alloy aging treatment of[J].Materials Review A: Review Papers,2012,26(8):114(in Chinese).
吴颖,温彤,朱曾涛.7xxx系铝合金时效处理的研究现状及应用进展[J].材料导报:综述篇,2012,26(8):114.
10 Acer E,Çadirli E, Erol H, et al. Effect of heat treatment on the microstructures and mechanical properties of Al-5.5Zn-2.5Mg alloy[J].Materials Science and Engineering: A,2016,662:144.
11 Chen X M, Song R G, Li J. Research status and development trend of 7xxx aluminum alloy[J].Materials Review A: Review Papers,2009,23(2):67(in Chinese).
陈小明,宋仁国,李杰.7xxx系铝合金的研究现状及发展趋势[J].材料导报:综述篇,2009,23(2):67.
12 Solonin A N, Churyumov A Y, Mikhailovskaya A V, et al. Mode-ling the evolution of the structure and properties of alloys for an Al-Zn-Mg system in ageing[J].Russian Journal of Non-Ferrous Metals,2010,51(6):471.
13 Kanno M, Araki I, Cui Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J].Materials Science and Technology,1994,10(7):599.
14 Jiang X J, Tafto J, Noble B, et al. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys[J].Metallurgical and Materials Transactions A,2000,31(2):339.
15 Queudet H, Lemonnier S, Barraud E, et al. Effect of heat treatments on the microstructure of an ultrafine-grained Al-Zn-Mg alloy produced by powder metallurgy[J].Materials Science and Enginee-ring: A,2017,658:71.
16 He Z L, Gao W L, Lu Z, et al. Effect of heat treatment on microstructure and properties of 7A85 aluminum alloy[J].Materials Engineering,2015,43(8):13(in Chinese).
何正林,高文理,陆政,等.热处理对7A85铝合金组织和性能的影响[J].材料工程,2015,43(8):13.
17 Yan D J. Strengthening of Al-Zn-Mg-Cu alloy in aging of 7475 aluminum alloy[J].Material Engineering,1992(2):15(in Chinese).
阎大京.从7475铝合金的时效看Al-Zn-Mg-Cu系合金的强化[J].材料工程,1992(2):15.
18 He Y, Song R G, Chen X M. Double peak properties and microstructure of double aged 7003 aluminum alloy[J].Light Alloy Processing Technology,2011,39(1):52(in Chinese).
何源,宋仁国,陈小明.7003铝合金时效双峰的组织与性能研究[J].轻合金加工技术,2011,39(1):52.
19 Yuan S P, Pu X, Zhang G J, et al. Influence of multiple aging precipitation on the conductivity of second Al-Mg-Si alloy[J].Chinese Journal of Nonferrous Metals,2010,20(11):2070(in Chinese).
袁生平,蒲雄,张国君,等.多重时效析出第二相对Al-Mg-Si合金电导率的影响[J].中国有色金属学报,2010,20(11):2070.
20 Ning A L, Liu Z Y, Feng C, et al.Study on microstructure and electrical conductivity and stress corrosion resistance of Al-Zn-Mg-Cu alloy[J].Journal of Heat Treatment,2008,29(2):108(in Chinese).
宁爱林,刘志义,冯春,等.Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究[J].材料热处理学报,2008,29(2):108.
21 Cui X, Wu Y, Zhang G, et al. Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys[J].Composites Part B: Engineering,2017,110:381.
[1] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[5] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[6] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[7] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[8] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[9] 方文, 王海宾, 张朝磊, 王宏斌, 马晓艺. 预应力钢绞线用大规格82B盘条冬季时效期的系统控制[J]. 材料导报, 2019, 33(14): 2408-2412.
[10] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[11] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[12] 周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019, 33(11): 1793-1800.
[13] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[14] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[15] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed