Aging Duration Dependence and Aging Temperature Dependence of Microstructure and Properties of Al-6Zn-1.1Mg Alloy
LIU Lei1,2, ZHOU Haitao1, ZHOU Nan2, NONG Deng2, WANG Shuncheng2
1 School of Materials Science and Engineering, Central South University, Changsha 410083; 2 Guangdong Institute of Materials and Processing, Guangzhou 510650
Abstract: The effects of aging temperature and duration on the microstructure evolution and properties of the new Al-6Zn-1.1Mg alloy were determined and investigated by using hardness tester, transmission electron microscope (TEM), tensile tester and conductivity tester. The results indicated that with the increase of aging duration, the GP zone, η′ phase (metastable MgZn2) and η phase (stable MgZn2) precipitate in turn from the Al-6Zn-1.1Mg alloy. The GP zone and η′ phase can hinder the movement of dislocations and consequently strengthen the alloy. When the number of GP zone reaches the maximum, the first peak values of alloy’s strength and hardness can be obtained. And the transformation of GP zone into η′ phase causes the alloy’s strength and hardness to reach the second peak values. Moreover, while the η′ phase is transformed into η phase, the strength and hardness of the alloy begin to decline. With the increase of aging temperature, the precipitations of GP zone, η′ phase and η phase are gradually accelerated, resulting in less time consumptions of the alloy’s strength and hardness to reach both of the first and second peaks, as well as shorter time interval between the two peaks. In addition, we also observed the higher second peak values (compared with the first peak va-lues) of strength and hardness at an aging temperature of 120 ℃, and the higher first peak values (compared with the second peak values) of strength and hardness at aging temperatures higher than 120 ℃.
1 王祝堂.手机机身铝合金新说(上)[N].中国有色金属报,2016-5-5(3). 2 王祝堂.手机机身铝合金新说(下)[N].中国有色金属报,2016-5-12(3). 3 Wang K S, Chen Y Z, Han Y, et al. Technology and optimization of cold extrusion drawing compound forming of aluminum alloy mobile phone shell[J].Journal of Plasticity Engineering,2015,22(4):30(in Chinese). 王可胜,陈勇章,韩豫,等.铝合金手机壳冷挤压拉深复合成形工艺及优化[J].塑性工程学报,2015,22(4):30. 4 Tanner D A, Robinson J S. Residual stress magnitudes and related properties in quenched aluminiumalloys[J].Materials Science and Technology,2006,22(1):77. 5 Fang H C, Chen K H, Chao H, et al. Nest macros, Al-Zn-Mg-Cu super aluminum alloy the research status and prospect of powder [J].Metallurgy Materials Science and Engineering,2009,14(6):351(in Chinese). 方华蝉,陈康华,巢宏,等.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J].粉末冶金材料科学与工程,2009,14(6):351. 6 Liu B, Peng C Q, Gong R C, et al. Early days, current situation and prospect of large aircraft aluminum alloy chinese[J].Journal of Nonferrous Metals,2010,20(9):1705(in Chinese). 刘兵,彭超群,工日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705. 7 Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J].Corrosion Science,2007,49(3):1437. 8 Baydogan M, Cimenoglu H, Kayali E S, et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets[J].Metallurgical and Materials Transactions A,2008,39(10):2470. 9 Wu Y, Wen T, Zhu C T. 7xxx current situation and development aluminum alloy aging treatment of[J].Materials Review A: Review Papers,2012,26(8):114(in Chinese). 吴颖,温彤,朱曾涛.7xxx系铝合金时效处理的研究现状及应用进展[J].材料导报:综述篇,2012,26(8):114. 10 Acer E,Çadirli E, Erol H, et al. Effect of heat treatment on the microstructures and mechanical properties of Al-5.5Zn-2.5Mg alloy[J].Materials Science and Engineering: A,2016,662:144. 11 Chen X M, Song R G, Li J. Research status and development trend of 7xxx aluminum alloy[J].Materials Review A: Review Papers,2009,23(2):67(in Chinese). 陈小明,宋仁国,李杰.7xxx系铝合金的研究现状及发展趋势[J].材料导报:综述篇,2009,23(2):67. 12 Solonin A N, Churyumov A Y, Mikhailovskaya A V, et al. Mode-ling the evolution of the structure and properties of alloys for an Al-Zn-Mg system in ageing[J].Russian Journal of Non-Ferrous Metals,2010,51(6):471. 13 Kanno M, Araki I, Cui Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J].Materials Science and Technology,1994,10(7):599. 14 Jiang X J, Tafto J, Noble B, et al. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys[J].Metallurgical and Materials Transactions A,2000,31(2):339. 15 Queudet H, Lemonnier S, Barraud E, et al. Effect of heat treatments on the microstructure of an ultrafine-grained Al-Zn-Mg alloy produced by powder metallurgy[J].Materials Science and Enginee-ring: A,2017,658:71. 16 He Z L, Gao W L, Lu Z, et al. Effect of heat treatment on microstructure and properties of 7A85 aluminum alloy[J].Materials Engineering,2015,43(8):13(in Chinese). 何正林,高文理,陆政,等.热处理对7A85铝合金组织和性能的影响[J].材料工程,2015,43(8):13. 17 Yan D J. Strengthening of Al-Zn-Mg-Cu alloy in aging of 7475 aluminum alloy[J].Material Engineering,1992(2):15(in Chinese). 阎大京.从7475铝合金的时效看Al-Zn-Mg-Cu系合金的强化[J].材料工程,1992(2):15. 18 He Y, Song R G, Chen X M. Double peak properties and microstructure of double aged 7003 aluminum alloy[J].Light Alloy Processing Technology,2011,39(1):52(in Chinese). 何源,宋仁国,陈小明.7003铝合金时效双峰的组织与性能研究[J].轻合金加工技术,2011,39(1):52. 19 Yuan S P, Pu X, Zhang G J, et al. Influence of multiple aging precipitation on the conductivity of second Al-Mg-Si alloy[J].Chinese Journal of Nonferrous Metals,2010,20(11):2070(in Chinese). 袁生平,蒲雄,张国君,等.多重时效析出第二相对Al-Mg-Si合金电导率的影响[J].中国有色金属学报,2010,20(11):2070. 20 Ning A L, Liu Z Y, Feng C, et al.Study on microstructure and electrical conductivity and stress corrosion resistance of Al-Zn-Mg-Cu alloy[J].Journal of Heat Treatment,2008,29(2):108(in Chinese). 宁爱林,刘志义,冯春,等.Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究[J].材料热处理学报,2008,29(2):108. 21 Cui X, Wu Y, Zhang G, et al. Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys[J].Composites Part B: Engineering,2017,110:381.