Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2918-2928    https://doi.org/10.11896/cldb.18110023
  金属与金属基复合材料 |
镍基单晶高温合金中的位错及其对蠕变行为的影响
何闯,刘林,黄太文,杨文超,张军,傅恒志
西北工业大学凝固技术国家重点实验室,西安 710072
Dislocations in Ni-based Single Crystal Superalloys and Their Influence on Creep Behavior
HE Chuang, LIU Lin, HUANG Taiwen, YANG Wenchao, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
下载:  全 文 ( PDF ) ( 27996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金是一种极为重要的高温结构材料,主要用于制造航空发动机叶片等热端部件。位错是引起材料塑性变形的主要原因,会导致零件失效或断裂。镍基单晶高温合金在实际服役过程中形成的位错类型多样、形态各异,对蠕变性能的影响也各不相同。因此,位错与蠕变机制的关系一直是高温合金性能研究的重点,备受国内外学者关注。
   单晶高温合金中的位错组态主要包括γ相中的独立位错、形成堆垛层错的位错、界面位错网以及γ′相中的超位错。独立位错、堆垛层错、界面位错网和γ′相中各种类型的超位错均是位错与溶质原子、位错与γ′相以及位错与位错之间复杂交互作用的结果。基体通道中的独立位错形成于蠕变初期,是所有位错之源。堆垛层错是高温合金低温蠕变中最常见的位错组态,既可存在于基体相,也可存在于γ′相,层错形貌与两相层错能大小有关。界面位错网呈四方状或六方状,集中分布于γ/γ′两相界面附近,是高温蠕变的典型组织特征之一。高温蠕变下进入γ′相的超位错有两种,分别是〈110〉型超位错和〈010〉型超位错,两种超位错通过γ′相的机制明显不同,〈110〉型超位错主要以切割方式穿过γ′相,而〈010〉型超位错只能以滑移和攀移相结合的方式通过γ′相。
   合金的蠕变性能与位错组态密切相关。堆垛层错是合金层错能低的表现,低层错能会增大初始蠕变量,缩短合金的低温蠕变寿命;界面位错网是位错与两相错配应力交互作用的结果,位错网阻碍了位错切割γ′相,对高温蠕变性能非常有利;位错穿过γ′相是高温合金高温蠕变的控制性因素,进入γ′相的超位错因类型不同,对蠕变性能的影响也明显不同。对高温合金中各种位错形貌、结构以及形成过程的认识是高温合金蠕变机理研究的基础,关于位错组态对蠕变性能的影响和位错组态影响因素的分析可以为合金设计提供新思路。
   本文针对镍基单晶高温合金中的几种主要类型位错,分别从位错形貌与结构、位错形成机理以及位错对蠕变性能的影响三个方面进行了综述,阐明了不同类型位错的形貌特征,分析了位错决定蠕变性能的内在机理,总结了合金元素强化的一般性规律,在此基础上提出了几种提高单晶高温合金蠕变性能的潜在技术途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何闯
刘林
黄太文
杨文超
张军
傅恒志
关键词:  镍基单晶高温合金  位错形成机制  合金强化  蠕变性能    
Abstract: Nickel-based single crystal superalloy is an extremely important high-temperature structural material, mainly used to manufacture the hot end components such as aero-engine blades. Dislocations are the main reason for plasticdeformation of materials and can directly lead parts to failure or fracture. The dislocations in nickel-based single crystal superalloys formed in actual service processes, come in many types and morphologies and have different effects on creep performance. Therefore, the research on the relationship between dislocation and creep mechanism has been the focus of superalloys performance research, and has attracted the attention of researchers at home and abroad.
The single crystal sueralloys consists of γ matrix and γ′ precipitate. The dislocations in Ni-based single crystal superalloys mainly include: independent dislocations in γ matrix, stacking fault, dislocation network, and super dislocations in γ′ precipitate, which are the result of interactions between dislocations and solute atoms, dislocations and γ′ precipitate, and dislocations and dislocations. Independent dislocations are formed in matrix channel at primary creep and are the source of all dislocations such as dislocation network and super dislocations. Stacking fault is the most common dislocation configuration in low temperature creep of superalloys. It can exist alone in the γ matrix phase, as well as in the γ′ phase. The stacking fault morphology is related to the fault energy of γ and γ′ phase. The interface dislocation network is mainly tetragonal or hexagonal, and is concentrated in the vicinity of the γ/γ′ two phase interface, which is one of the typical structural features of high temperature creep. There are two kinds of super dislocations entering γ′ precipitate under high temperature creep, which are 〈110〉 type super dislocation and 〈010〉 type super dislocation. The mechanisms of the two super dislocations through γ′ phase are obviously different. 〈110〉 type super dislocations mainly pass through the γ′ phase in a cutting manner, while 〈010〉 type super dislocations can only pass through the γ′ phase by a slipping and climbing combination manner.
Dislocations determine the properties of superalloys. Stacking fault is the performance of lowfault energy of alloys. Low stacking fault energy will increase primary creep and shorten creep life of low temperature creep of the alloys. The interface dislocation network is the result of interaction between dislocations and two-phase misfit stress, which hinders subsequent dislocation cutting through γ′ phase. It is very beneficial to improve the high temperature creep performance of superalloys. Dislocation through γ′ phase is considered to be the controlling factor for high temperature creep of superalloys. The type of the super dislocation entering the γ′ phase is different, and the creep properties are also significantly different. The understanding of dislocation morphology, structure, and formation processes in superalloys is the basis study of creep mechanism for superalloys. The analysis of the dislocation type influence on creep performance and the influencing factors of dislocation formation can provide new ideas for alloy design.
In this paper, several typical dislocations in nickel-based single crystal superalloys are reviewed from three aspects: dislocation morphology and structure, dislocation formation mechanism, and the influence of dislocations on creep properties. The morphological characteristics of different types of dislocations are clarified, and the internal mechanism of dislocationinfluence creep properties is analyzed. The general laws of alloying element strengthening are summarized. On this basis, several potential technical approaches to improve the creep properties of single crystal superalloys are proposed.
Key words:  Ni-based single crystal superalloys    dislocations formation mechanism    alloy strengthening    creep behaviors
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TG111.8  
基金资助: 国家自然科学基金项目(51631008;51690163;51690160;51501152;51771148);国家重点基础研究发展计划项目(2016YFB0701400;2017YFB0702902)
作者简介:  何闯,2007年6月毕业于西安工业大学,获得理学学士学位,2012年6月毕业于西安建筑科技大学,获得工学硕士学位。现为西北工业大学材料学院博士研究生,在刘林教授的指导下从事研究。目前主要研究领域为镍基单晶高温合金的成分设计和蠕变机制研究。
刘林,西北工业大学材料学院教授、博士研究生导师。他于1988年12月在西北工业大学取得工学博士学位,1990年获德国著名亚历山大·冯·洪堡奖学金,于1991—1992年在德国柏林工业大学和马克斯·普朗克金属学研究所从事客座研究,1993年起在西北工业大学应用物理系担任教授、系副主任,1995年被评为博士生导师,1996—2001年担任西北工业大学科技处处长、校学术委员会秘书长,2002以后在西北工业大学材料学院任教授、博士生导师。长期从事航空发动机用高温金属材料以及金属凝固理论和技术等方面的研究,以第一或通信作者身份在Scripta Materialia、Journal of Materials Science & Technology、Superalloys、Journal of Alloys and Compounds、AdvancedEngineering Materials、Materials letters等SCI学术期刊发表研究论文200余篇。主持国家863、国家973、国家自然科学基金、国家重大科技专项等项目20余项。获国家发明奖1项、省部级科学技术奖6项,获得专利15项,合作出版了《先进材料定向凝固》《航空航天材料定向凝固》等学术著作。
引用本文:    
何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
HE Chuang, LIU Lin, HUANG Taiwen, YANG Wenchao, ZHANG Jun, FU Hengzhi. Dislocations in Ni-based Single Crystal Superalloys and Their Influence on Creep Behavior. Materials Reports, 2019, 33(17): 2918-2928.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110023  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2918
1 Reed R C.<i>The superalloys: Fundamentals and applications</i>, Cambridge University Press, United Kingdom, 2006.<br />
2 Pollock T M.<i>Dislocations in solids (vol. 11)</i>, Nabarro F R N, Duesbery M S, ed. Elsevier, Amsterdam, Netherlands, 2002, pp. 545.<br />
3 Sims C T, Stoloff N S, Hagel W C. <i>Superalloys Ⅱ</i>, Wiley, New York, America, 1987.<br />
4 Reed R C, Rae C M F.<i>Physical metallurgy (Fifth Edition vol. 3)</i>,Laughlin D E, ed. Elsevier, Amsterdam, Netherlands, 2015, pp. 2215.<br />
5 Kelly A, Knowles K M.<i>Crystallography and crystal defects</i>, John Wiley & Sons, Hoboken, America, 2012.<br />
6 Pettinari F, Douin J, Saada G, et al.<i>Materials Science & Engineering A</i>, 2002, 325(1-2), 511.<br />
7 Kostka A, M lzer G, Eggeler G, et al.<i>Journal of Materials Science</i>, 2007, 42(11), 3951.<br />
8 Srinivasan R, Eggeler G F, Mills M J.<i>Acta Materialia</i>, 2000, 48(20), 4867.<br />
9 Zhang J X, Murakumo T, Koizumi Y, et al.<i>Acta Materialia</i>, 2003, 51(17), 5073.<br />
10 Rae C M F, Reed R C.<i>Acta Materialia</i>, 2007, 55(3), 1067.<br />
11 Vitek V, Paidar V.<i>Dislocations in solids (vol. 14)</i>, Hirth J P, ed. Else-vier, Amsterdam, Netherlands, 2008, pp. 439.<br />
12 Kamaraj M.<i>Sadhana</i>, 2003, 28(1),115.<br />
13 Koizumi Y, Kobayashi T, Yokokawa T, et al. In: Conference Record of Superalloys 2004. Pennsylvania, 2004, pp.35.<br />
14 Hobbs R A, Zhang L, Rae C M F, et al.<i>Materials Science and Enginee-ring: A</i>, 2008, 489(1-2), 65.<br />
15 Tan X P, Liu J L, Jin T, et al.<i>Materials Science & Engineering A</i>, 2013, 580(10), 21.<br />
16 Zhang J X, Murakumo T, Koizumi Y, et al.<i>Metallurgical and Materials Transactions A</i>, 2002, 33(12), 3741.<br />
17 Zhang J X, Murakumo T, Koizumi Y, et al.<i>Metallurgical and Materials Transactions A</i>, 2004, 35(6), 1911.<br />
18 Pollock T M, Argon A S.<i>Acta Metallurgica et Materialia</i>, 1992, 40(1), 1.<br />
19 Field R D, Pollock T M, Murphy W H. In: Conference Record of Superalloys 1992. Pennsylvania, 1992, pp. 557.<br />
20 Huang X Y. <i>The microstructure of materials and its electron microscopy analysis</i>, Metallurgy Industry Press, China, 2008.<br />
黄孝瑛.材料微观结构的电子显微学分析,冶金工业出版社,2008.<br />
21 Zhang P, Yuan Y, Shen S C, et al.<i>Journal of Alloys and Compounds</i>, 2017, 694, 502.<br />
22 Ma S, Carroll L, Pollock T M.<i>Acta Materialia</i>, 2007, 55(17), 5802.<br />
23 Diologent F, Caron P.<i>Materials Science and Engineering: A</i>, 2004, 385(1-2), 245.<br />
24 Wang X G, Liu J L, Jin T, et al. <i>Scripta Materialia</i>, 2015, 99, 57.<br />
25 Tang Y, Huang M, Xiong J, et al.<i>Acta Materialia</i>, 2017, 126, 336.<br />
26 Link T,Epishin A,Klaus M,et al. <i>Materials Science and Engineering: A</i>, 2005, 405(1-2), 254.<br />
27 Wang X G, Liu J L, Jin T, et al.<i>Materials Science and Engineering: A</i>, 2015, 626, 406.<br />
28 Sarosi P M,Srinivasan R,Eggeler G F,et al. <i>Acta Materialia</i>, 2007, 55(7), 2509.<br />
29 Hantcherli M, Pettinari-Sturmel F, Viguier B, et al.<i>Scripta Materialia</i>, 2012, 66(3-4), 143.<br />
30 Chen K, Zhao L R, Tse J S.<i>Materials Science and Engineering: A</i>, 2003, 360(1-2), 197.<br />
31 Murakumo T, Kobayashi T, Koizumi Y, et al. <i>Acta Materialia</i>, 2004, 52(12), 3737.<br />
32 Parsa A B, Wollgramm P, Buck H, et al.<i>Acta Materialia</i>, 2015, 90, 105.<br />
33 Buffiere J Y, Ignat M.<i>Acta Metallurgica et Materialia</i>, 1995, 43(5), 1791.<br />
34 Epishin A, Link T, Brückner U, et al.<i>Acta Materialia</i>, 2001, 49(19), 4017.<br />
35 Long H, Liu Y, Kong D, et al.<i>Journal of Alloys and Compounds</i>, 2017, 724, 287.<br />
36 Yang W, Yue Q, Cao K, et al.<i>Materials Characterization</i>, 2018, 137, 127.<br />
37 Jacome L A, N rtersh user P, Somsen C, et al.<i>Acta Materialia</i>, 2014, 69, 246.<br />
38 Kontis P, Li Z, Collins D M, et al.<i>Scripta Materialia</i>, 2018, 145, 76.<br />
39 Ding Q, Li S, Chen L, et al.<i>Acta Materialia</i>, 2018, 154, 137.<br />
40 Giraud R, Hervier Z, Cormier J, et al.<i>Metallurgical and Materials Tran-sactions A</i>, 2013, 44(1), 131.<br />
41 Sajjadi S A, Nategh S.<i>Materials Science and Engineering: A</i>, 2001, 307(1), 158.<br />
42 Kovarik L, Unocic R R, Li J, et al.<i>Progress in Materials Science</i>, 2009, 54(6), 839.<br />
43 Unocic R R, Kovarik L, Shen C, et al. In: Conference Record of Superalloys 2008. Pennsylvania, 2008, pp. 377.<br />
44 Unocic R R, Zhou N, Kovarik L, et al.<i>Acta Materialia</i>, 2011, 59(19), 7325.<br />
45 Matuszewski K, Rettig R, Singer R F. In: Conference Record of Euro-pean Symposium on Superalloys and their Applications. Riviera, 2014, pp.09001.<br />
46 Boom G, Bronsveld P M, De Hosson J T M.<i>Scripta Metallurgica</i>, 1985, 19(9), 1123.<br />
47 Eggeler G, Dlouhy A.<i>Acta Materialia</i>, 1997, 45(10), 4251.<br />
48 Cui L, Yu J, Liu J, et al.<i>Materials Science and Engineering: A</i>, 2018, 710, 309.<br />
49 Karunaratne M S A, Carter P, Reed R C.<i>Materials Science and Enginee-ring: A</i>, 2000, 281(1), 229.<br />
50 Janotti A, KrCˇmar M, Fu C L, et al.<i>Physical Review Letters</i>, 2004, 92(8), 085901.<br />
51 Crudden D J, Mottura A, Warnken N, et al.<i>Acta Materialia</i>, 2014, 75, 356.<br />
52 Kruml T, Conforto E, Piccolo B L, et al.<i>Acta Materialia</i>, 2002, 50(20), 5091.<br />
53 Kakehi K.<i>Metallurgical and Materials Transactions A</i>, 1999, 30(5), 1249.<br />
54 Kakehi K.<i>Materials Science and Engineering: A</i>, 2000, 278(1-2), 135.<br />
55 Mackay R A, Maier R D. <i>Metallurgical Transactions A</i>, 1982, 13(10), 1747.<br />
56 Lin D, Wen M.<i>Acta Metallurgica</i>, 1989, 37(11), 3099.<br />
57 Shang S L, Zacherl C L, Fang H Z, et al.<i>Journal of Physics: Condensed Matter</i>, 2012, 24(50), 505403.
[1] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[2] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[3] 禹润缜, 刘胜新, 王朋旭, 黄智泉, 魏建军. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21): 3780-3788.
[4] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[5] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[6] 蒋睿哲, 顾玉丽, 何玉怀. 单晶高温合金DD6不同状态下的元素分布与力学行为*[J]. 《材料导报》期刊社, 2017, 31(12): 93-97.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed