Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3780-3788    https://doi.org/10.11896/j.issn.1005-023X.2018.21.015
  金属与金属基复合材料 |
Fe-Cr-C系硬面合金及其硬质相的研究进展
禹润缜1, 2, 刘胜新1, 王朋旭1, 2, 黄智泉2, 魏建军2
1 郑州大学材料科学与工程学院,郑州 450001;
2 郑州机械研究所有限公司特种焊接材料研究室,郑州 450001
A Brief Survey on the Fe-Cr-C Hard Facing Alloys and Its Hard Phases
YU Runzhen1, 2, LIU Shengxin1, WANG Pengxu1, 2, HUANG Zhiquan2, WEI Jianjun2
1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001;
2 Department of Special Welding Materials, Limited Company of Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 3389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对工件表面的磨损破坏,常通过熔覆、喷涂等手段,在失效位置得到高耐磨性的硬面合金层来进行修复强化。该方法不仅经济方便,还可有效提高工件服役寿命。在表面修复工艺中,硬面层的成分选用极为重要。Fe-Cr-C系硬面合金即一类典型的Fe基表面修复材料,目前正广泛应用于各类工矿耐磨部件的表面修复及强化中,与其他成分的硬面合金相比,它具有几大显著优势:(1)成本低廉;(2)强度、韧度、耐磨性优异且较平衡;(3)性能可调节范围广,能满足于多种磨损工况的修复强化。
传统的Fe-Cr-C系硬面合金主要依靠其凝固时产生的M3C、M23C6、M7C3、高碳马氏体等几种高硬度物相来获得一定的耐磨性。然而在实际磨损工况中,通常会出现硬度更高的SiC、Al2O3等磨料,且近年来,随着各种高新技术的竞相出现,大量机械设备规格的转型升级成为大势所趋,这使得各类耐磨部件需要满足于更为苛刻的服役条件。因此,Fe-Cr-C系硬面合金的耐磨性有待进一步改善。
针对这一问题,目前国内外的研究焦点多集中于合金微观组织调控,尤其是硬质相的引入及其尺寸形态改善等,且取得了一系列可观的成果。在硬质相引入方面,探索出各有优缺点的两种引入手段——原位合成法与外界加入法。其中,原位合成法一方面可在熔池反应中得到高热力学稳定性的陶瓷硬质相,另一方面也可在一定程度上强化合金组织。然而,由于熔池高温停留时间短,某些高熔点硬质相生成效率较低。虽外界加入法可有效解决这一问题,但是也需注意硬质相溶解烧损、硬质相与基体界面稳定性差等现象;在硬质相形态控制方面,不少学者探索出合金成分、熔覆制备工艺对硬质相含量、尺寸形态、生长方向的影响。对于合金成分,调整Cr和C的质量比(以下均简称为Cr/C值)或增加C含量可提高碳化物的体积分数,适量合金元素的添加也可通过异质形核作用细化硬质相;在熔覆工艺方面,提高焊后冷却速率可抑制合金凝固初期C原子的扩散,使初生M7C3碳化物呈细小及高密度形态,控制焊后热梯度方向也可使M7C3垂直于堆焊面生长。此外,在焊接熔池中适当引入磁场也可诱导液态金属的一次枝晶臂分离,增加碳化物的形核质点,从而起到细化组织的作用。
基于近年来的最新研究成果,本文归纳了Fe-Cr-C系硬面合金中硬质相调控的研究进展。首先介绍了合金的凝固行为与组织结构,然后着重综述了硬质相的引入方式、形态控制手段,最后对Fe-Cr-C系硬面合金未来可能的发展趋势提出见解,并围绕硬质相拟定了潜在的研究方向,以期为进一步改善Fe-Cr-C系硬面合金的耐磨性提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹润缜
刘胜新
王朋旭
黄智泉
魏建军
关键词:  Fe-Cr-C系硬面合金  硬质相  合金强化  碳化物形态    
Abstract: Hard facing alloy layers with high wear-resistance can repair and strengthen the surface of worn workpiece, which is prepared at failure position through cladding and spraying technology usually. This method is not only economical and convenient, but also can improve the service life of workpiece effectively. In surface repairing process, it is extremely important for selecting the composition of hard facing alloy. Fe-Cr-C hard facing alloy, is one of the typical Fe-based surface-repair materials, which has been widely used in the surface repairing and strengthening of diverse engineering and mining wear-parts. Compared to other hard facing alloy with different composition, Fe-Cr-C exhibit several notable advantages including low cost, excellent and balanced strength, toughness, wear-resistance, wide adjustable range of performance, which can satisfy the surface repairing and strengthening of a variety of wear conditions.
Regarding the traditional Fe-Cr-C hard facing alloys, the acquisition of certain wear resistance relies on the formation of several high-hardness phases like M3C, M23C6, M7C3, and high carbon martensite during solidification. However, in actual wear conditions, there are abrasives like SiC and Al2O3 which show higher hardness than the alloys. More importantly, with the emergence of a variety of new and high technologies in recent years, the transformation and upgrading of a large number of mechanical equipment specifications have become an irresistible trend, which makes various wear-resistant parts to confront more severe service conditions. Therefore, the wear resistance of Fe-Cr-C hard facing alloys needs to be further improved.
In order to solve this problem, most of the researches at home and abroad focus on the control of alloy microstructure, especially the introduction of hard phases and the improvement of their size and morphology. A series of considerable research achievements have been obtained. In the aspect of hard phase introduction, two methods, in-situ synthesis and external addition, are proposed. Through the method of in-situ synthesis, not only can high thermodynamically stable ceramic hard phases be obtained in the molten pool reaction, but the microstructure of alloys can also be strengthened. However, due to the short residence time in molten pool with high temperature, some hard phases with high melting point are difficult to produce. This problem can be effectively solved by the method of external addition, nevertheless, it is necessary to pay attention to the dissolution of hard phases and poor stability of the interface between hard phases and matrix. In the aspect of morphological control of hard phases, the effects of alloy composition and cladding technologies on the volume fraction, size morphology and growth direction of hard phases are explored by many scho-lars. For the alloy composition, adjusting the Cr/C value or increasing the C content contribute to the volume fraction improvement of carbides, and the addition of appropriate amounts of alloying elements can also refine the hard phase by heterogeneous nucleation. In terms of cladding process, improving the cooling rate after welding can inhibit the diffusion of C atoms in the early stage of solidification, which endows the primary M7C3 carbides with a fine and highly-dense appearance. Controlling the direction of thermal gradient after welding can also make M7C3 grow perpendicular to the surface of hard facing alloys. Besides, introducing a magnetic field into molten pool can also induce the separation of primary dendritic arms in liquid metal to increase the number of carbide nucleation cores, thereby playing a role in refinement.
Based on the latest research progress, this article offers a retrospection of the research efforts with respect to the regulation of hard phases in Fe-Cr-C hard facing alloys. The solidification behavior and microstructure of Fe-Cr-C alloys are presented firstly. Then the introduction of hard phase and the means of morphology regulation are reviewed with emphasis. Finally, the development trends of Fe-Cr-C hard facing alloys are proposed and the potential research directions about the hard phases are drawn up in order to provide references for further improving the wear resistance of Fe-Cr-C hard facing alloys.
Key words:  Fe-Cr-C hard facing alloy    hard phases    alloy strengthening    morphology of carbides
                    发布日期:  2018-11-21
ZTFLH:  TG141  
基金资助: 国家大学生创新创业训练计划项目(2017cxcy213)
作者简介:  禹润缜:男,1994年生,硕士研究生,主要从事耐磨堆焊材料研究 E-mail:yuro94@126.com;刘胜新:通信作者,女,1968年生,教授,主要从事金属材料组织与性能研究 E-mail:zdclyjs@163.com
引用本文:    
禹润缜, 刘胜新, 王朋旭, 黄智泉, 魏建军. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21): 3780-3788.
YU Runzhen, LIU Shengxin, WANG Pengxu, HUANG Zhiquan, WEI Jianjun. A Brief Survey on the Fe-Cr-C Hard Facing Alloys and Its Hard Phases. Materials Reports, 2018, 32(21): 3780-3788.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.015  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3780
1 Xu B S.Remanufacture engineering and its development in China[J].China Surface Engineering,2010,23(2):1(in Chinese).
徐滨士. 中国再制造工程及其进展[J].中国表面工程,2010,23(2):1.
2 Li D, Hao F F, Liu Q F, et al.Analysis of microstructures and properties on hardfacing metal of self-shielded flux-cored wire with high chromium cast iron type[J].Journal of Yanshan University,2009,33(3):215(in Chinese).
李达,郝飞飞,刘庆峰,等.高铬铸铁型自保护药芯焊丝堆焊组织与性能分析[J].燕山大学学报,2009,33(3):215.
3 Pearce J T H, Chairuangsri T, Wiengmoon A, et al. Use of electronmicroscopy on microstructure characterization of high chromium cast irons[J].China Foundry,2007,4(1):38.
4 Gong J X, Xu J Q, Lu D B, et al.Effects of TiC particles on microstructure and abrasion resistance of Fe-C-Cr-Si alloy hardfacing layers[J].Materials for Mechanical Engineering,2015,39(4):43(in Chinese).
龚建勋,许继青,路德斌,等.TiC颗粒对铁-碳-铬-硅合金堆焊层显微组织及耐磨性的影响[J].机械工程材料,2015,39(4):43.
5 Wu H J, Gong J X, Liu J Q, et al.Effects of WC content on the microstructure and abrasion wear of open arc hardfacing austenitic alloy[J].Materials Science and Engineering of Powder Metallurgy,2016,21(4):562(in Chinese).
吴慧剑,龚建勋,刘江晴,等.WC含量对明弧堆焊奥氏体合金显微组织及耐磨性的影响[J].粉末冶金材料科学与工程,2016,21(4):562.
6 Gur A K, Ozay C, Orhan A, et al.Wear properties of Fe-Cr-C and B4C powder coating on AISI 316 stainless steel analyzed by the Taguchi method[J].Materialprufung,2014,56(5):393.
7 Yang J P, Chen J, Hao J J, et al.Effect of cooling rate on metallographic structure of high-carbon ferrochrome[J].Journal of Central South University (Science and Technology),2016,47(7):2213(in Chinese).
杨建平,陈津,郝赳赳,等.冷却速率对高碳铬铁金相组织的影响[J].中南大学学报(自然科学版),2016,47(7):2213.
8 Yuan Y L, Li Z G.Friction and wear performance of carbide (Cr, Fe)7C3-reinforced Fe-based composite coating[J].Chinese Journal of Materials Research,2013,27(6):622(in Chinese).
袁有录,李铸国.柱状碳化物(Cr,Fe)7C3增强Fe基涂层的摩擦磨损性能[J].材料研究学报,2013,27(6):622.
9 Liu Z J, Li L C, Wu X J, et al.Effect of microstructure on mechanical properties of Fe90 surfacing layer at magnetic control state[J].Journal of Shenyang University of Technology,2013,35(1):31(in Chinese).
刘政军,李乐成,武小娟,等.磁控状态下Fe90堆焊层显微组织对力学性能的影响[J].沈阳工业大学学报,2013,35(1):31.
10 Jackson R S.The austenite liquidus surface and constitutional diagram for the Fe-Cr-C metastable system[J].Journal of the Iron and Steel Institute,1970,208(2):163.
11 Tabrett C P, Sare I R, Ghomashchi M R.Microstructure-property relationships in high chromium white iron alloys[J].International Materials Reviews,1996,41(2):59.
12 陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社,2006:314.
13 Lai H H, Hsieh C C, Lin C M, et al.Effect of oscillating traverse welding on microstructure evolution and characteristic of hypoeutectic hardfacing alloy[J].Surface & Coating Technology,2014,239(2):233.
14 Yang J, Yang Y L, Jiao X Y, et al.Fe-15wt%Cr-Xwt%C hardfa-cing surface layer: Wear resistance and its enhanced mechanism with C additive[J].Materials Science & Technology,2013,29(9):1034.
15 Lai H H, Hsieh C C, Lin C M, et al.Characteristics of eutectic α(Cr, Fe)-(Cr, Fe)23C6 in the eutectic Fe-Cr-C hardfacing alloy[J].Metallurgical & Materials Transactions A,2017,48(1):493.
16 Lin C M, Lai H H, Kuo J C, et al.Effect of carbon content on soli-dification behaviors and morphological characteristics of the consti-tuent phases in Cr-Fe-C alloys[J].Materials Characterization,2011,62(12):1124.
17 Filipovic M, Kamberovic Z, Korac M, et al.Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons[J].Materials & Design,2013,47(11):41.
18 Wang W J, Lewis R, Yang B, et al. Wear and damage transitions of wheel and rail materials under various contact conditions[J].Wear,2016,s362-363:146.
19 Coronado J J, Rodriguez S A, Sinatora A.Effect of particle hardness on mild-severe wear transition of hard second phase materials[J].Wear,2013,301:82.
20 Zhou S, Dai X, Zheng H.Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding[J].Optics & Laser Technology,2012,44(1):190.
21 Wang Z H, Liu F, He D Y, et al.Influence of niobium content on WC dissolution in iron-based hardfacing alloy[J].Transactions of the China Welding Institution,2016,37(3):120(in Chinese).
王智慧,刘飞,贺定勇,等.碳化铌对铁基碳化钨耐磨堆焊合金中碳化钨溶解的影响[J].焊接学报,2016,37(3):120.
22 Liu H Y, Yu F B, Meng Q S, et al.Microstructure and properties of Fe-Cr-C hardfacing alloys reinforced with TiC-TiB2[J].Science and Technology of Welding and Joining,2017,17(5):419.
23 Sabet H, Mirdamadi S, Kheirandish S, et al.Effect of volume fraction of (Cr, Fe)7C3 carbides on corrosion resistance of the Fe-Cr-C hardfacing alloys at Cr/C=6[J].Metallurgical & Materials Engineering,2013,19(2):107.
24 Sabet H, Kheirandish S, Mirdamadi S, et al.The microstructure and abrasive wear resistance of Fe-Cr-C hardfacing alloys with the composition of hypoeutectic, eutectic, and hypereutectic at Cr/C=6[J].Tribology Letters,2011,44:237.
25 Yang K, Li J, Bao Y, et al.Microstructure and wear property of Fe-Cr13-C hardfacing alloy reinforced by WC particles[J].International Journal of Modern Physics B,2017,31:1744030.
26 Hajihashemi M, Shamanian M, Azimi G.Physical, mechanical, and dry sliding wear properties of Fe-Cr-W-C hardfacing alloys under different Tungsten addition[J].Metallurgical and Materials Transactions B,2014,46(2):1.
27 Woo J W, Lee K Y, Kim J H, et al. The effect of boron on the sli-ding wear behavior of iron-based hardfacing alloys for nuclear power plants valves[J].Materials Science Forum,2006,510-511(1-3):90.
28 Ji H K, Kang H K, Noh S D, et al.The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys[J].Wear,2009,267(9-10):1415.
29 Yang K, Yu S, Li Y, et al.Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy[J].Applied Surface Science,2008,254(16):5023.
30 Zhu W D, Liu R P, Pan P, et al.Effect of boron on formability and wear resistance of carbon arc hardfacing layer with Fe-based alloy blocks[J].Materials for Mechanical Engineering,2010,34(3):57(in Chinese).
朱文东,刘仁培,潘攀.硼对铁基合金粉块碳弧堆焊层成形性和耐磨性的影响[J].机械工程材料,2010,34(3):57.
31 Lai H H, Hsieh C C, Lin C M, et al.Effects of vanadium content on the microstructure and dry sand abrasive wear of a eutectic Cr-Fe-C hardfacing alloy[J].Metals and Materials International,2016,22(1):101.
32 Zhou Y F, Yang Y L, Li D, et al.Effect of titanium content on microstructure and wear resistance of Fe-Cr-C hardfacing layers[J].Welding Journal,2012,91(8):229.
33 Zhou Y F, Yang Y L, Yang J, et al.Effect of Ti additive on (Cr, Fe)7C3 carbide in arc surfacing layer and its refined mechanism[J].Applied Surface Science,2012,258(17):6653.
34 Correa E O, Alcantara N G, Valeriano L C, et al.The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process[J].Surface & Coating Technology,2015,276:479.
35 Chung R J, Tang X, Li D Y, et al.Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe-25wt.%Cr-4wt.%C[J].Wear,2009,267(1-4):356.
36 Chung R J, Tang X, Li D Y, et al.Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J].Wear,2013,301(1-2):695.
37 Sare I R, Arnold B K.The influence of heat treatment on the high-stress abrasion resistance and fracture toughness of alloy white cast irons[J].Metallurgical & Materials Transactions A,1995,26(7):1785.
38 Gahr K H Z, Eidis G T. Abrasive wear of white cast irons[J].Wear,1980,64(1):175.
39 Yang K, Gao Y, Yang K, et al. Mcrostructure and wear resistance of Fe-Cr13-C-Nb hardfacing alloy with Ti addition[J].Wear,2017,s376-377:1091.
40 Hao F F, Liao B, Li D.Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism[J].Journal of Rare Earths,2011,29(6):609.
41 Zhou Y F, Yang Y L, Jiang Y W, et al.Fe-24wt.%Cr-4.1wt.%C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive[J].Materials Characterization,2012,72(7):77.
42 Zhou Y F, Yang Y L, Qi X W, et al.Influence of La2O3 addition on microstructure and wear resistance of Fe-Cr-C cladding formed by arc surface welding[J].Journal of Rare Earths,2012,30(10):1069.
43 Yang J, Tian J, Hao F, et al.Microstructure and wear resistance of the hypereutectic Fe-Cr-C alloy hardfacing metals with different La2O3 additives[J].Applied Surface Science,2014,289(1):437.
44 Yuan X, Zhou Y F, Yang J, et al.Refinement of nano-Y2O3 on microstructure of hypereutectic Fe-Cr-C hardfacing coatings[J].Journal of Rare Earths,2015,58(6):671.
45 Gou J, Wang Y, Sun J, et al.Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles[J].Surface & Coating Technology,2017,311:113.
46 Coronado J J.Effect of (Fe, Cr)7C3 carbide orientation on abrasion wear resistance and fracture toughness[J].Wear,2011,270(3):287.
47 Cao Q.Effect of the ratio of Cr/C on the microstructure and property of Fe-Cr-C-Ti surfacing alloy[J].Research on Metallic Materials,2015,41(1):9(in Chinese).
曹青. Cr/C比值对Fe-Cr-C-Ti系堆焊合金组织和性能的影响[J].金属材料研究,2015,41(1):9.
48 Wang Z H, Wang Q B, Cui L, et al.Influence of cooling rate and composition on orientation of primary carbides of Fe-Cr-C hardfacing alloys[J].Science & Technology of Welding & Joining,2013,13(7):656.
49 Cheng J B, Sun B, Liu Q, et al.Synthesis of Fe-based coatings by low frequency electromagnetic stirring: Evolution of microstructure and mechanical properties[J].Surface & Coating Technology,2016,307:728.
50 Cheng J B, Xu B S, Liang X B, et al.Microstructure and mechanical characteristics of iron-based coating prepared by plasma transferred arc cladding process[J].Materials Science and Engineering A,2008,492(1):407.
[1] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[2] 弓满锋, 隋广洲, 连海山, 李明圣, 莫德云, 陈健, 伍尚华. 富Co-layers硬质合金表面渗氮处理微观结构和性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 56-61.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed