Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2910-2917    https://doi.org/10.11896/cldb.18070038
  金属与金属基复合材料 |
钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响
郑国明1,李磊2,毛小南1,2,蔡建华2,吴聪3,雷磊4
1 东北大学材料科学与工程学院,沈阳110006
2 西北有色金属研究院,西安 710016
3 西安交通大学材料科学与工程学院,西安 710016
4 西北工业大学材料学院,西安 710016
Variant Selection During Titanium Alloy BCC↔HCP Phase Transformation and Its Effect on Crystal Orientation
ZHENG Guoming1, LI Lei2, MAO Xiaonan1,2, CAI Jianhua2, WU Cong3, LEI Lei4
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110006
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016
3 School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710016
4 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710016
下载:  全 文 ( PDF ) ( 17775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在钛合金的实际生产中,材料通常经过β单相区、α+β双相区的锻造或热加工,外加相应的热处理制度。在生产过程中,大都伴随αβ相变,在理想状态下,相变生成的变体随机形核并长大,此时钛合金的晶粒细小且取向分布均匀,具有较好的力学性能。但在实际热加工中,由于各种因素的存在,相变过程中发生变体选择的现象,其会严重影响晶体取向的分布,进而损害材料的力学性能。归纳起来,影响相变过程中变体选择的因素可分为:(1)合金内部形成的各种缺陷和残留相;(2)加工工艺的影响。
   钛合金加工过程中形成的内部缺陷主要有位错、各种晶界、相界和夹杂物等,除了α相和β相合金外,室温下还有残余相存在。从热力学角度来说,这些缺陷会导致整个系统能量失衡。为使系统能量处于平衡状态,则需让某些变体优先析出,从而发生变体选择。到目前为止,通过各种微观机制的研究发现,钛合金在热加工过程中倾向于形成共享同一〈110〉方向的相邻β晶粒,其通常造成β晶粒两端析出c轴平行于β〈110〉方向的α相,而且这种α变体被择优选择的概率非常高,关于这种β/β晶粒偶的来源问题一直未弄清楚。另外,钛合金相变对热加工参数很敏感,其中冷却速度、加工温度、保温时间和变形量等都会引起变体选择。通过深入的分析,加工工艺对变体选择的影响最终都可以归结于工艺参数导致的特定材料内部结构,进而影响变体选择。
   目前为止,通过控制相变过程的变体选择来提高材料力学性能或调控晶体取向分布的报道还未出现,关于钛合金相变的研究成果主要由发达国家完成,且大多数优秀的成果出现在2010年之前,2010年之后则鲜有新成果。这主要是由于高温下α→β转变的信息难以直接获取,成为深入研究相变变体选择的瓶颈。但近几年来,原位EBSD技术的出现为研究该问题提供了可能,相信未来几年会涌现一些新成果。
   本文归纳了钛合金发生相变时各种内部和外部因素造成变体选择现象的机理,分析了其与钛合金织构演变的关系,并介绍了钛合金α?β转变时发生变体选择的本质、成因及对晶体取向分布的影响等方面的研究现状,指出了该研究方向目前存在的问题和今后的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑国明
李磊
毛小南
蔡建华
吴聪
雷磊
关键词:  相变  变体选择  织构演变    
Abstract: In the actual production of titanium alloys, the material is usually forged or hot processed in the β single-phase region and the α+β dual-phase region, plus a corresponding heat treatment. During the process, titanium alloys usually experienced the α?β phase transformation. In idea state, the variants randomly nucleate and grow, and fine grain and uniform orientation distribution willbe formed,which lead to good mechanical properties of materials. However, due to the existence of various factors in the actual thermal processing, the phenomenon of variant selection during phase transformation occurs, which will affect the distribution of crystal orientation and thus impair the mechanical properties of the material. To sum up, the factors influencing the selection of variants during the phase transition process can be divided into: (1) various internal defects formed in the alloy and the residual phase; (2) the influence of processing technology.
The internal defects formed during the processing of titanium alloys mainly include dislocations, various grain boundaries and phase boundaries, and inclusions. In addition to α and β titanium alloys, residual phases exist at room temperature. From a thermodynamic point of view, these defects cause the energy imbalance of the entire system. In order to balance the system energy, some variants need to be precipitated, resulting in the phenomenon of variant selection. So far, various micro-mechanism studies have found that titanium alloys tend to form adjacent β crystal grains that share the same 〈110〉 direction during the thermal processing, which usually causes α-phase to be precipitated with the c-axis parallel to β〈110〉 direction, and the frequency of the alpha-variant to be preferentially selected is very high, and the rotting cause of this β/β-crystal couple has not been clarified. In addition, the titanium alloy phase transition is very sensitive to the thermal processing parameters, such as cooling rate, processing temperature, holding time and deformation and so on, which will cause variant selection. Through in-depth analysis, the influe-nce of the processing technology on the selection of variants can ultimately be attributed to the fact that it leads to abnormalities in the internal structure of the material, which in turn leads to variant selection.
Reports of improving the mechanical properties and crystal orientation distribution of the material through controlling the selection of variants in the phase transition process have not yet appeared. The research results on the phase transformation of titanium alloys are mainly completed by developed countries, and most of the outstanding results appeared before 2010. After 2010, there are few new results. This is mainly due to the fact that it is difficult to directly obtain the information of the α?β transition at high temperature, which has become a heavy obstacle for the in-depth study of the selection of phase change variants. However, the emergence of in-situ EBSD technology in recent years has provided new opportunities for the study of this issue. It is believed that a number of new results will emerge in the coming years.
In this paper, the mechanism of thevariant selection caused by various internal and external factors in the phase transformation of titanium alloys are summarized. The relationship between the titanium alloy texture evolution and the evolution of α?β in titanium alloys is described. The current paperintroduced the essence, causes ofvariantselection, and its effects on the distribution of crystal orientation, and pointed out the current problems in the direction of the study and the future research focus.
Key words:  phase transition    variant selection    texture evolution
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TM914.4+2  
作者简介:  郑国明,1990年出生,2014年毕业于辽宁科技大学,获得工学学士学位。现为东北大学在读硕士研究生,在毛小南老师的指导下进行科学研究。主要从事TA19钛合金组织与织构的研究。
毛小南,博士,西北有色金属研究院钛合金研究所所长,东北大学兼职教授。主要从事高性能储氢、600 ℃以上用高温钛合金等材料研究,曾承担过国家“八五”、“十五”期间复合材料研究的国家级课题,多次获得省级科技进步奖项,发表SCI论文60余篇。
引用本文:    
郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
ZHENG Guoming, LI Lei, MAO Xiaonan, CAI Jianhua, WU Cong, LEI Lei. Variant Selection During Titanium Alloy BCC↔HCP Phase Transformation and Its Effect on Crystal Orientation. Materials Reports, 2019, 33(17): 2910-2917.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070038  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2910
1 Yi Y, Lu Y F,Ge P, et al. Material Sciences, 2014, 4(5), 197.2 Zhao Z B. The crystallographic orientation of α phase in Ti60 alloy. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2014 (in Chinese).赵子博.Ti60合金中α相的晶体取向研究. 博士学位论文,中国科学院大学,2014.3 Glavicic M G, Bartha B B, Jha S K, et al. Acta Materialia, 2012, 60(3), 1048.4 Motyka M, Kubiak K, Sieniawski J. Phase transformations and characte-rization of α+β titanium alloys, Elsevier, Netherland, 2014.5 Lonardelli I, Gey N, Wenk H R, et al. Acta Materialia, 2007, 55(17), 5718.6 Jourdan C, Gastaldi J, Marzo P, et al. Material Sciences, 1991,55(26), 4355.7 Glavicic M G, Bartha B B, Jha S K, et al. Materials Science and Engineering A, 2009, 60(3), 325.8 Bhattacharyya D, Viswanathan G B, Denkenberger R, et al.Acta Mate-rialia, 2003, 51(16), 4679.9 Shi R, Dixit V, Fraser H L, et al. Acta Materialia, 2014,23(75) ,156.10 Bocher P, Jahazi M, Germain L, et al. Solid State Phenomena, 2005,36(105), 132.11 Germain L, Gey N, Humbert M, et al.Materials Science Forum, 2005, 495,663.12 Furuhara T, Maki T.Materials Science and Engineering A, 2001, 312(1), 145.13 Xin S W,Zhao Y Q. Titanium Industry Progress, 2010(24),23(in Chinese).辛社伟, 赵永庆. 钛工业进展, 2010 (24), 23.14 Skvortsova S V, Ilyin A A.Russian Metallurgy, 2007, 2007(5), 355.15 Stanford N, Bate P S.Acta Materialia, 2004, 56(17), 5215.16 Davies P S. An investigation of microstructure and texture evolution in the near-a titanium alloy timetal 834. Ph.D. Thesis, University of Sheffield, UK, 2009.17 Ahmed T, Rack H J. Materials Science and Engineering A, 1998,25(162),206.18 Lutjering G, Williams J C. Titanium, Springer, Germany, 2003.19 Obasi G C. Variant selection and its effect on texture in Ti-6Al-4V. Ph. D. Thesis, University of Manchester, USA,2011.20 Mironov S, Murzinova M, Zherebtsov S, et al. Acta Materialia, 2009, 57(8), 2470.21 Bhattacharyya D, Viswanathan G B, Fraser H L, et al. Acta Materialia, 2007, 55(20), 6765.22 Gey N, Bocher P, Uta E, et al. Acta Materialia, 2012,63(67), 2647.23 Romero J, Preuss M, Quinta J. Acta Materialia, 2009, 57(18), 5501.24 Humbert M, Germain L, Geya N, et al.Materials Science and Engineering A, 2006, 430(1-2), 157.25 Zhao Z B, Wang Q J, Hu Q M, et al. Acta Materialia, 2017,25(126), 372.26 Lonardelli I, Gey N, Wenk H R, et al. Acta Materialia, 2007, 55(17), 5718.27 Cayron C. Scripta Materialia, 2008, 59(5), 570.28 Germain L, Gey N, Humbert M, et al.Acta Materialia,2008, 56(16), 4298.29 Germain L, Gey N, Humbert M,et al. Acta Materiaia, 2005, 53(13), 3535.30 Humbert M, Germain L, Gey N, et al.Materials Science and Engineering A, 2006, 430(1-2),157.31 Zhao Z B, Wang Q J, Liu J R, et al.Acta Materialia, 2017, 131(856), 305.32 Karthikeyan T, Dasguptaa A, Khatirkar R, et al. Materials Science and Engineering A, 2010, 528(2),549.33 Obasi G C, Birosca S, Leo P D G, et al. Acta Materialia, 2012, 60(17), 6013.34 Gey N, Humbert M. Acta Materialia, 2002, 50(2), 277.35 Zhu Z S, Gu J L, Liu R Y, et al.Materials Science and Engineering A, 2000, 112(2),199.36 Ramachandra C,Singh A K,Sarma G M K, et al. Metallurgical Transactions A, 1993, 24, 1273.37 Zeng L, Bieler T R. Materials Science and Engineering A, 2005, 392(1-2), 403.38 Stanford N, Bate P S.Materials Science Forum, 2005,495(497), 669.39 Germain L, Gey N, Humbert M. Ultramicroscopy, 2007, 107(12), 1129.40 Karthikeyan T,Saroja S, Vijayalakshmi M. Scripta Materialia, 2006, 55(9), 771.41 Seward G G E, Celotto S, Prior D J, et al.Acta Materialia, 2004, 52(4), 821.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[8] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[9] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[10] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[11] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[12] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[13] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[14] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[15] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed