Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2237-2242    https://doi.org/10.11896/cldb.18040134
  金属与金属基复合材料 |
纳米晶NiTi形状记忆合金的研究进展
毛虎,杨宏亮,史晓斌
安徽工业大学材料科学与工程学院,马鞍山 243032
Research Progress of Nanocrystalline NiTi Shape Memory Alloys
MAO Hu, YANG Hongliang, SHI Xiaobin
School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032
下载:  全 文 ( PDF ) ( 9542KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代科技的迅猛发展,航空航天、军事工业及医疗卫生等重要领域要求器件高速化、智能化及小型化,而传统的形状记忆合金材料已满足不了现代科技的发展要求。研究者们对形状记忆合金的加工工艺和结构不断进行改进,发现Cu基和Fe基记忆合金存在马氏体热稳定性差、超弹性和形状记忆效应差、强度及硬度低、抗腐蚀性能差等严重问题,阻碍了其应用发展。纳米晶NiTi形状记忆合金制备高阻尼、高强度及耐腐蚀性材料自进入人们的视野以来,就得到了广泛关注。因此,纳米晶NiTi基形状记忆合金有望成为未来功能材料领域的重要研究对象。
纳米晶NiTi形状记忆合金由于具有比粗晶和超细晶更高的硬度、抗拉强度及更大的可回复应变等特性而得到广泛关注。然而,NiTi形状记忆合金的诸多功能特性均与热弹性马氏体相变息息相关,其相变特征主要有温度诱发马氏体相变和应力诱发马氏体相变两种机制。研究发现,影响NiTi基合金可逆马氏体转变温度的因素较多,主要有热循环、合金元素、晶粒尺寸和退火温度等。特别是当NiTi记忆合金的晶粒尺寸达到纳米级时,合金对温度与外加应力极为敏感,会表现出与粗晶和超细晶不同的相变特征。
晶粒尺寸对纳米晶NiTi形状记忆合金相变的影响主要体现在热诱发马氏体相变及应力诱发马氏体相变两方面。基于此,近年来研究者们对热诱发马氏体相变临界晶粒尺寸、相变温度及应力诱发马氏体相变的临界应力、应力滞后等方面进行了深入研究。对于热诱发马氏体相变,B19′马氏体相变的临界晶粒尺寸约为50 nm,相变温度随晶粒尺寸减小而降低;R相变的临界尺寸约为15 nm,相变温度随晶粒尺寸减小而升高。对于应力诱发马氏体相变,临界相变应力随晶粒尺寸减小而升高。对于应力诱发马氏体相变的应力滞后,研究者们得出了不同的结论,主要是位错与晶粒尺寸对应力滞后共同作用的结果。
研究晶粒尺寸对其相变的影响将有利于更好地研究纳米晶NiTi记忆合金,使其在热敏元件、管接头、纳米级致动器及微机电体系等领域有巨大的发展潜力。本文简述了温度诱发马氏体相变和应力诱发马氏体相变机制,主要综述了晶粒尺寸对纳米晶NiTi合金两种诱发马氏体相变机制的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛虎
杨宏亮
史晓斌
关键词:  纳米晶  NiTi形状记忆合金  热弹性马氏体相变    
Abstract: With the rapid development of modern science and technology, important fields such as aerospace, military industry, medical and health require high-speed, intelligent and miniaturized devices, and traditional shape memory alloy materials can not meet the development requirements of modern technology. Researchers have continuously improved the processing technology and structure of shape memory alloys, and found that Cu-based and Fe-based memory alloys have poor thermal stability of martensite, poor superelastic and shape memory effects, low strength and low corrosion resistance. Serious problems have hindered the development of its applications. The nano-crystalline NiTi shape memory alloy has been widely concerned since it has entered the field of vision for its high damping, high strength and corrosion resistance. Therefore, nanocrystalline NiTi-based shape memory alloys are expected to become important research objects in the field of functional materials in the future.
Nanocrystalline NiTi shape memory alloys have attracted wide attention due to their higher hardness, tensile strength, and greater recoverable strain than coarse and ultrafine crystals. The multi-functional properties of NiTi shape memory alloy are closely related to the thermo-elastic martensitic transformation. The phase transformation characteristics mainly include temperature-induced martensitic transformation and stress-induced martensitic transformation. It is found that there are many factors affecting the reversible martensite transformation temperature of NiTi-based alloys, including thermal cycle, alloying elements, grain size and annealing temperature. When the grain size of the NiTi shape memory alloy reaches nanoscale, it is extremely sensitive to temperature and applied stress, and exhibits a phase transformation characteristic different from that of the coarse crystal and the ultrafine crystal.
The effect of grain size on the phase transformation of nanocrystalline NiTi shape memory alloys is mainly reflected in the two major aspects of thermal-induced martensitic transformation and stress-induced martensitic transformation. In this regard, in recent years, many researchers have studied on the critical grain size, phase transformation temperature of thermal-induced martensitic transformation and critical stress, stress hyste-resis of stress-induced martensitic transformation. For thermal-induced martensitic transformation, the critical grain size of B19' martensitic transformation is approximately 50 nm, and as the grain size decreases, the phase transformation temperature decreases. The critical dimension of R phase transformation is approximately 15 nm, and the phase transformation temperature increases with the decreasing grain size. For stress-induced martensitic transformation, the critical phase transformation stress increases with the decreasing grain size. For the stress hysteresis of stress-induced martensitic transformation, the researchers draw different conclusions, mainly due to the combination the effects of dislocation and grain size on stress hysteresis.
Therefore,investigating the effect of grain size on its phase transition will be beneficial to study nanocrystalline NiTi memory alloys, which reaches the potential of nanocrystalline NiTi alloys in the field of thermal elements, pipe joints, nanoscale brake and micro-electromechanical industries. The mechanism of temperature-induced martensitic transformation and stress-induced martensitic transformation is introduced,and the effects of grain size on two induced martensitic transformations of nanocrystalline NiTi alloys are reviewed in this paper.
Key words:  nanocrystalline    NiTi shape memory alloy    thermoelastic martensitic transformation
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51601001)
作者简介:  毛虎,2016年6月毕业于铜陵学院,获得工学学士学位。现为安徽工业大学材料科学与工程学院硕士研究生,在史晓斌老师的指导下进行科学研究。目前主要研究领域为形状记忆合金。
史晓斌,安徽工业大学材料科学与工程学院副教授,硕士研究生导师。2008年本科毕业于中国石油大学(北京)理学院;2014年于中国石油大学(北京)理学院获得博士学位。近年来,在形状记忆合金领域发表论文10余篇。
引用本文:    
毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
MAO Hu, YANG Hongliang, SHI Xiaobin. Research Progress of Nanocrystalline NiTi Shape Memory Alloys. Materials Reports, 2019, 33(13): 2237-2242.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040134  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2237
1 S'wiec P, Zubko M, Lekston Z, et al. Acta Physica Polonica, 2016, 130(4),1081.2 Tomozawa M, Kim H Y, Miyazaki S. Acta Materialia, 2009, 57(2),441.3 Todoroki T. Engineering Aspects of Shape Memory Alloys,DOI: 10.1016/B978-0-7506-1009-4.50031-7.4 Cydzik E. Engineering Aspects of Shape Memory Alloys,DOI: 10.1016/B978-0-7506-1009-4.50017-2.5 Zhang J, Liu Y, Yong H, et al. Materials & Design, 2014, 63(2),460. 6 Bahador A, Hamzah E, Kondoh K, et al. Journal of Materials Processing Technology, 2017, 248,198.7 Andani M T, Saedi S, Turabi A S, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68,224.8 Waitz T, Kazykhanov V, Karnthaler H P. Acta Materialia, 2004, 52(1),137.9 Waitz T, Karnthaler H P. Acta Materialia, 2004, 52(19),5461.10 Waitz T, Antretter T, Fischer F.D, et al. Journal of the Mechanics and Physics of Solids, 2007, 55(2),419.11 Sergueeva A V, Song C, Valiev R Z, et al. Materials Science & Enginee-ring A, 2003, 339(1),159.12 Ye J, Mishra R K, Pelton A R, et al. Acta Materialia, 2010, 58(2),490.13 Gunderov D, Lukyanov A, Prokofiev E, et al. Mate-rials Science & Engineering A, 2009, 503(1),75.14 Pushin V G, Gunderov D V, Kourov N I, et al. Ultra ne grained mate-rials III. The Minerals, Metals and Materials Society, 2004.15 Chan H P, Han S H, Kim S W, et al. Journal of Alloys & Compounds, 2016, 654,379.16 Waitz T, Pranger W, Antretter T, et al. Materials Science & Engineering A, 2008, 21,479.17 Valiev R, Gunderov D, Prokofiev E, et al. Materials Transactions, 2008, 49(1),97.18 Tsuchiya K, Hada Y, Koyano T, et al. Scripta Materialia, 2009, 60(9),749. 19 Otsuka K, Ren X. Progress in Materials Science, 2005, 50(5),511.20 Ramachandran B, Chen C H, Chang P C, et al. Intermetallics, 2015, 60,79.21 Zhou Y, Zhang J, Fan G, et al. Acta Materialia, 2005, 53(20),5365.22 Kim J I, Liu Y, Miyazaki S. Acta Materialia, 2004, 52(2),487.23 Fan G, Chen W, Yang S, et al. Acta Materialia, 2004, 52(14),4351.24 Zhang Y Q, Jiang S Y, Zhu X M, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(7),1580.25 Naresh H, Bharath H S, Prashantha S. Materials Today: Proceedings 2017, 4,11251.26 Mcbryan O A, Rosen J. Chinese Journal of Aeronautics, 2007, 20(2),153.27 Zhao Y N, Jiang S Y, Zhang Y Q, et al. Acta Metallurgica Sinica(English Letters), 2017, 30(8),1.28 Chen F, Tong Y X, Lu X L, et al. Materials Letters, 2011, 65(7),1073.29 Evirgen A, Karaman I, Santamarta R, et al. Acta Materialia, 2015, 83,48.30 Evirgen A, Karaman I, Noebe R D, et al. Scripta Materialia, 2013, 69(5),354. 31 Sinha, A, Mondal B, Chattopadhyay P P. Materials Science & Enginee-ring A, 2013, 561,344.32 Sinha A, Mondal B, Chattopadhyay P P. Materials Science & Engineering A, 2013, 561,338.33 Zhang D T, Guo B, Tong Y X, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(2),448. 34 Tsuchiya K, Ohnuma M, Nakajima K, et al. In: 2008 MRS Fall Meetin. Boston, 2009.35 Peterlechner M, Waitz T, Gammer C, et al. International Journal of Materials Research, 2011, 102(6),634.36 Arciniegas M, Gaillard Y, Pe a J, et al. Intermetallics, 2009, 17(10),784.37 Waitz T. Acta Materialia, 2005, 53(8),2273.38 Peterlechner M, Waitz T, Karnthaler H P. Scripta Materialia, 2008, 59(5),566.39 Ahadi A, Sun Q. Applied Physics Letters, 2013, 103(2),207.40 Shi X B, Cui L S, Jiang D Q, et al. Journal of Materials Science, 2014, 49(13),4643. 41 Shi X B, Ma Z Y, Zhang J S, et al. Smart Materials & Structures, 2015, 24(7).42 Miyazaki S, Otsuka K. Metallurgical Transactions A, 1986, 17(1),53.43 Mao S C, Li H X, Liu Y, et al. Journal of Alloys & Compounds, 2013, 579(579),100.44 Xia M, Liu P, Sun Q. Materials Letters, DOI:10. 1016/j. matlet. 2017.10.024.45 Li H X, Mao S C, Zang K T, et al. Journal of Alloys & Compounds, 2014, 588(4),337.46 Liu R, Li D Y. Metal Science Journal, 2013, 16(3),328.47 Sittner P, Liu Y, Novak V. Journal of the Mechanics & Physics of Solids, 2005,53(8),1719.48 Shi X B, Hu Z C, Hu X W, et al. Materials Characterization, 2017, 128,18449 Shi X B, Cui L S, Liu Z Y, et al. Rare Metals, 2014, 33(4),379.50 Ahadi A, Sun Q. Acta Materialia, 2014, 76(1),186.51 Huang X, Liu Y. Scripta Materialia, 2001, 45(2),153.52 Shi X B, Cui L S, Jiang D Q, et al. Materials Research Innovations, 2014, 18(4),578.53 Pushin V G, Stolyarov V V, Valiev R Z, et al. Materials Science & Engineering A, 2005, 410(12),386.54 Gunderov D V, Polyakov A V, Semenova I P, et al. Materials Science & Engineering A, 2013, 562,128.55 Delville R, Malard B, Pilch J, et al. International Journal of Plasticity,2011, 27(2),282.56 Dao M, Lu L, Asaro R J, et al. Acta Materialia, 2007, 55(12),4041.57 Budrovic Z, Van Swygenhoven H, Derlet P M, et al. Science, 2004, 304(5668),273.58 Ma W, Chen B, Liu F S, et al. Rare Metals, 2013, 32(5),448.59 Sun Q P, He Y J. International Journal of Solids & Structures, 2008, 45(13),3868. 60 Cho G B, Kim Y H, Hur S G, et al. Metals & Materials International, 2006, 12(2),181.61 Ahadi A, Sun Q. Acta Materialia, 2015, 90,272.62 Zhang Z, Ding X, Sun J, et al. Physical Review Letters, 2013, 111(14),145701.63 Shi X B, Guo F M, Zhang J S, et al. Journal of Alloys & Compounds, 2016, 688,62.64 Brinson L C, Schmidt I, Lammering R. Journal of the Mechanics & Physics of Solids, 2004, 52(7),1549.65 Kockar B, Karaman I, Kim J I, et al. Acta Materialia, 2008, 56(14),3630.66 Tan G, Liu Y, Sittner P, et al. Scripta Materialia, 2004, 50(2),193.67 Shi X, Yu M, Guo F, et al. Materials Letters, 2014, 131(131),233.
[1] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[2] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[3] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[4] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[5] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[6] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[7] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[8] 席文,陈铮,胡石. 形变诱发纳米晶局域固态非晶化的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 116-121.
[9] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[10] 周健, 孟利, 杨富尧, 吴雪, 马光, 陈冷. 横磁处理对1K107纳米晶铁芯磁性能的影响及高频损耗分析*[J]. 《材料导报》期刊社, 2017, 31(14): 22-25.
[11] 张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed