Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 68-72    https://doi.org/10.11896/j.issn.1005-023X.2017.011.009
  材料综述 |
低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*
张坤1, 李炯利1,2, 陈军洲1,2, 王旭东1,2, 何晓磊1,2, 武岳1,2, 张海平1,2
1 北京航空材料研究院,北京 100095;
2 北京市先进铝合金材料及应用工程技术研究中心,北京 100095
Advances in Bulk Nanostructured Aluminum Alloys and Aluminum-matrix Composites Prepared via Cryomilling
ZHANG Kun1, LI Jiongli1,2, CHEN Junzhou1,2, WANG Xudong1,2, HE Xiaolei1,2, WU Yue1,2, ZHANG Haiping1,2
1 Beijing Institute of Aeronautical Materials, Beijing 100095;
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095
下载:  全 文 ( PDF ) ( 1483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 详细介绍了国内外采用低温球磨粉末冶金法制备纳米晶铝及其铝基复合材料的研究进展。通过对比分析国内外在材料研制和工装设备研发等方面存在的主要差距,提出了国内在纳米晶铝应用研究中存在的问题、解决措施及发展方向。最后,对纳米晶铝/铝基复合材料未来的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张坤
李炯利
陈军洲
王旭东
何晓磊
武岳
张海平
关键词:  纳米晶  铝合金  铝基复合材料  低温球磨  工程应用    
Abstract: Research on the bulk nanostructured aluminum alloys and aluminum-matrix composites prepared via cryomilling is reviewed. The main gap between domestic and foreign on material preparation and equipment development is compared and analyzed. Besides, the existing problems, solutions and development directions of nanostructured aluminum in application study at home are also discussed. Finally, some suggestions and the application prospects on the bulk nanostructured aluminum alloys and aluminum-matrix composites are put forward.
Key words:  nanocrystalline    aluminum alloys    aluminum-matrix composite    cryomilling    engineering applications
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG146.2+1  
基金资助: 北京航空材料研究院创新基金(JK65150208)
作者简介:  张坤:女,1976年生,博士,高级工程师,主要从事铝合金及其复合材料研发与应用研究 E-mail:zhk76x@sina.com
引用本文:    
张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
ZHANG Kun, LI Jiongli, CHEN Junzhou, WANG Xudong, HE Xiaolei, WU Yue, ZHANG Haiping. Advances in Bulk Nanostructured Aluminum Alloys and Aluminum-matrix Composites Prepared via Cryomilling. Materials Reports, 2017, 31(11): 68-72.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.009  或          http://www.mater-rep.com/CN/Y2017/V31/I11/68
1 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2005.
2 Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scripta Mater,2005,53:481.
3 Williams J C, Starke J R E A. Progress in structural materials for aerospace systems [J]. Acta Mater,2003,51(19):5775.
4 Bampton C C, Wooten J R. Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby:USA, 7435306B2[P].2008-10-14.
5 Tellkamp V L, Melmed A, Lavernia E J. Mechanical behavior and microstructure of a thermally stable bulk nanostructure Al alloy[J]. Metall Maters Trans A, 2001,32:2335.
6 Lu Ke, Zhou Fei. Recent research progress on nanocrystalline materials[J]. Acta Metall Sin, 1997,33(1):99 (in Chinese).
卢柯, 周飞. 纳米晶体材料的研究现状[J]. 金属学报, 1997,33(1):99.
7 Tellkamp V L, Lavernia E J. Processing and mechanical properties of nanocrystalline 5083 Al alloy [J]. Nano Structured Mater,1999,12:249.
8 Hu T, Ma K, Topping T D, et al. Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle [J]. Scripta Mater,2014, 78-79:25.
9 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater,2014,62:141.
10 Ma K K, Hu T, Yang H, et al. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys [J]. Acta Mater,2016,103:153.
11 Witkin D, Lee Z, Rodriguez R, et al. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility [J]. Scripta Mater,2003,49:297.
12 Han B Q, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall Mater Trans A,2005,36:957.
13 Zhang Z H, Han B Q, Chung K H, et al. On the behavior of microstructures with multiple length scales [J]. Metall Mater Trans A,2006,37:2265.
14 Li Y, et al. Investigation of aluminum-based nanocomposites with ultra-high strength [J]. Mater Sci Eng A,2009,527:305.
15 Vogt R. Ultrafine-grained aluminum and boron carbide metal matrix composites [D]. California: University of California,2010.
16 Cheng Junsheng, Yang Bin, Zhang Jishan, et al. Research on grain stability under room temperature of nanocrystalline Al-Zn-Mg-Cu alloy cryomilled powders [J]. Heat Treatment Metals,2008,33(3):17(in Chinese).
程军胜,杨滨,张济山,等. 液氮球磨Al-Zn-Mg-Cu合金纳米晶粉末的室温稳定性研究[J]. 金属热处理, 2008,33(3):17.
17 Li Jiongli, Li Shasha, Xiong Yancai, et al. Nanocrystalline aluminum powders prepared via cryomilling [J]. J Aeronaut Mater,2012,32(2):38(in Chinese).
李炯利, 厉沙沙, 熊艳才, 等. 低温球磨制备纳米晶纯铝粉体[J]. 航空材料学报,2012,32(2):38.
18 Li Jiongli, Li Shasha, Xiong Yancai, et al. Preparation of super high strength bulk nanocrystalline Al by cryomilling [J].Chinese J Nonferrous Metals,2013, 23(5):1182(in Chinese).
李炯利, 厉沙沙, 熊艳才, 等. 低温球磨制备超高强度块体纳米晶纯铝[J]. 中国有色金属学报,2013, 23(5):1182.
19 美国金属学会. 金属手册[M]. 范玉殿, 张效忠, 白新德, 译. 北京: 机械工业出版社,1994.
20 Bonetti E, Pasquini L, Sampaolesi E. The influence of grain size on the mechanical properties of nanocrystalline aluminum[J]. Nano Structured Mater, 1997,9:611.
21 Sun Xiukui, Cong Hongtao, Xu Jian, et al. Synthesis and tensile properties of nanocrystalline Al(Ⅰ)[J]. Chinese J Mater Res,1998,12(6):645(in Chinese).
孙秀魁, 丛洪涛, 徐坚, 等. 纳米晶Al的制备及拉伸性能(Ⅰ)[J]. 材料研究学报,1998,12(6):645.
22 Sun Xiukui, Cong Hongtao, Xu Jian, et al. Synthesis and tensile properties of nanocrystalline Al(Ⅱ)[J]. Chinese J Mater Res,1998,12(6):651(in Chinese).
孙秀魁, 丛洪涛, 徐坚, 等. 纳米晶Al的制备及拉伸性能(Ⅱ)[J]. 材料研究学报,1998,12(6):651.
23 Cheng J S, Cui H, Chen H B, et al. Bulk nanocrystalline Al prepared by cryomilling[J]. J University of Science and Technology Beijing,2007, 14(6):523.
24 Wang Deqin, Zhang Dawei. Structure and mechanical properties of bulk nanocrystalline aluminum by cryomilling [J]. J Dalian Jiaotong University,2010, 31(1):68(in Chinese).
王德庆, 张大伟. 低温球磨制备块体纳米Al晶体材料的组织与性能[J]. 大连交通大学学报,2010,31(1):68.
25 Li Jiongli,Zhang Kun,Xiong Yancai. Advances in research on nanocrystalline Al-Mg alloys with high performance [J]. J Mater Eng,2013(11):75(in Chinese).
李炯利,张坤,熊艳才. 高性能纳米晶Al-Mg合金的研究进展[J]. 材料工程,2013(11):75.
26 Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling [J]. Mater Sci Eng A,2015,626:400.
[1] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[2] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[5] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[6] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[9] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[10] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[11] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[12] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[13] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[14] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[15] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed