Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 116-121    https://doi.org/10.11896/j.issn.1005-023X.2018.01.014
  物理   材料综述 |材料 |
形变诱发纳米晶局域固态非晶化的研究进展
席文(),陈铮,胡石
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials
Wen XI(),Zheng CHEN,Shi HU
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

形变诱发纳米晶金属材料局域固态非晶化转变是近年来提出的获得局域固态非晶化组织的一种新途径,这种转变机制使得以位错、变形孪晶、晶界滑动和晶粒转动为主要变形机制的纳米晶材料中可能存在一种全新的塑性变形机制,并且,局域固态非晶化的临界转变条件和转变机制可为材料的结构优化设计提供依据。概括了国内外实验及数值模拟手段关于形变诱发局域固态非晶化转变的研究,例如采用机械球磨、高压扭转变形、经典力场和分子动力学等方法,证明了形变诱发局域固态非晶化转变的存在。此外,还分析了发生局域固态非晶化转变的内在机制。基于晶体相场模型的优势,提出用该方法模拟局域固态非晶化转变的突出之处,表明了晶体相场法能够有效研究局域固态非晶化转变过程。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席文
陈铮
胡石
关键词:  纳米晶  数值模拟  局域固态非晶化    
Abstract: 

Localized solid-state amorphization (LSSA) transformation of nanocrystalline materials induced by mechanical deformation is proposed to obtain localized amorphous structure in recent years. This new method forms an entirely new plastic deformation mechanism in nanocrystalline materials with dislocation, deformation twinning, grain boundary slide and grain rotation as the main deformation mechanism. The critical transformation condition and the transition mechanism of the LSSA transformation provide a basis for the optimum structural design of materials. This paper summarizes the domestic and foreign experimental and simulative studies of deformation-induced LSSA transformation, such as mechanical ball milling, high-voltage torsional deformation, classical force field and molecular dynamics methods, which prove existence of the deformation-induced LSSA transformation. Also, the intrinsic mechanism of LSSA transformation is analyzed. Based on the advantages of the crystal phase field model, this method is proposed to simulate the LSSA transformation and the crystal phase field method can effectively study the LSSA transformation process.

Key words:  nanocrystalline    numerical simulation    localized solid-state amorphization
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG113.11  
基金资助: 国家自然科学基金(51474176)
作者简介:  席文:女,1991年生,硕士研究生,研究方向为纳米晶局域非晶化转变的模拟 E-mail: xixiwen0628@163.com
引用本文:    
席文,陈铮,胡石. 形变诱发纳米晶局域固态非晶化的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 116-121.
Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials. Materials Reports, 2018, 32(1): 116-121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.014  或          http://www.mater-rep.com/CN/Y2018/V32/I1/116
  
  
  
  
[1] Zhang Zhefeng, Wu Fufa, Fan Jitang , et al. Deformation and fracture of amorphous alloy[J].China Academic Journal, 2008(4):349(in Chinese).
[1] 张哲峰, 伍复发, 范吉堂 , 等. 非晶合金材料的变形与断裂[J].中国科学, 2008(4):349.
[2] Ikeda H, Qi Y, Cagin T , et al. Strain rate induced amorphization in metallic nanowires[J]. Physical Review Letters, 1999,82(14):2900.
[3] Han Shuang, Zhao Lei, Jiang Qing , et al. Deformation-induced localized solid-state amorphization in nanocrystalline nickel[J]. Scientific Reports, 2012,2(7):134.
[4] William L J . Bulk glass forming metallic alloys science and technology[J]. Science and Technology, 1999,24(10):42.
[5] Wang Chao . Study on the characteristics of bulk amorphous alloy structure evolution as stress induced[D]. Xi’an: Chang’an University, 2014(in Chinese).
[5] 王超 . 块体非晶合金中应力诱发的结构演化特性研究[D]. 西安:长安大学, 2014.
[6] Yan Xiangquan, Song Xiaoyan, Zhang Jiuxing . Review on development of bulk amorphous alloys Rare Metal Materials and Engineering, 2008,37(5):931(in Chinese).
[6] 闫相全, 宋晓艳, 张久兴 . 块体非晶合金材料的研究进展[J]. 稀有金属材料与工程, 2008,37(5):931.
[7] Wang Weihua . The essence and characteristics of amorphous materials Progress in Physics, 2013,33(5):199(in Chinese).
[7] 汪卫华 . 非晶态物质的本质和特性[J]. 物理学进展, 2013,33(5):199.
[8] Greer. Greer . Mtallic glasses[J]. Frontiers in Materials Science, 1995,267(5206):412.
[9] Li Zhong, Wang Jiangwei, Sheng Hongwei , et al. Formation of monatomic metallic glasses through ultrafast liquid quenching[J]. Nature, 2014,512(7513):177.
[10] KavehE, Toh S, Makoto A , et al. High-pressure torsion of pure cobalt Hcp-fcc phase transformations and twinning during severe plastic deformation[J]. Applied Physics Letters, 2013,102(18):181181.
[11] PeterlechnerM, Waitz T, Karnthaler P H . Nanoscale amorphization of severely deformed NiTi shape memory alloys[J]. Scripta Materialia, 2009,60(12):1137.
[12] YangX Y, Wu Y K, Ye H Q . Localized amorphization in SiC induced by ball milling[J]. Journal of Materials Science Letters, 2001,20(16):1517.
[13] YeChang, Liu Yang, Sang Xiahan , et al. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening[J]. Journal of Applied Physics, 2015,118(13):134134.
[14] WuX, Tao N, Hong Y , et al. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition[J]. Journal of Physics D—Applied Physics, 2005,38(22):4140.
[15] ZhangY S, Zhang L C, Niu H Z , et al. Deformation twinning and localized amorphization in nanocrystalline tantalum induced by sliding friction[J]. Materials Letters, 2014,127(27):4.
[16] ImadaK, Ishimaru M, Sato K . Atomistic structures of nano engineered SiC and radiation induced amorphization resistance[J]. Journal of Nuclear Materials, 2015,465:433.
[17] WangX, Jamison L, Sridharan K . Evidence for cascade overlap and grain boundary enhanced amorphization in siliconcarbide irradiated with Kr ions[J]. Acta Materialia, 2015,99:7.
[18] HuY, Li Z C, Zhang Z J . Irradiation induced localized amorphization in Mo-Re alloy films[J]. Materials Transactions, 2010,51(4):670.
[19] LiuY, Wang Y, Suo X . Impact induced bonding and boundary amorphization of TiN ceramic particles Impact induced bonding and boundary amorphization of TiN ceramic particles during room temperature vacuum cold spray deposition[J]. EMBO Journal, 2015,21(1-2):22.
[20] 20Ovid'ko L A . Nanoscale amorphization as a special deformation mode in nanowires[J]. Scripta Materialia, 2012,66(6):402.
[21] KohA J, Heow-Pueh L . Shock induced localized amorphization in metallic nanorods with strain rate dependent characteristics[J]. Nano Letters, 2006,6(10):2260.
[22] YoshihiroN, Oohashi K, Toyoshima T , et al. Strain induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Structural Geology, 2015,72:142.
[23] SubhashG A . Influence of stress state and strain rate on structural amorphization in boron carbide[J]. Journal of Applied Physics, 2012,111(100):2941.
[24] LuoXiaotao, Yang Guanjun, Li Changjiu . High strain rate induced localized amorphization in cubic BN/NiCrAl nanocomposite through high velocity impact[J]. Scripta Materialia, 2011,65(7):581.
[25] MeldrumA, Boatner L A, Ewing R C . Nanocrystalline zirconia can be amorphized by ion irradiation[J]. Physical Review Letters, 2002,88(2):237.
[26] SwamyV, Kuznetsov A, Dubrovinsky L S , et al. Size dependent pressure induced amorphization in nanoscale TiO2[J]. Physical Review Letters, 2006,96(13):135135.
[27] ZhaoY H . Thermodynamic model for solid-state amorphization of pure elements by mechanical-milling[J]. Journal of Non-crystalline Solids, 2006,352(52):5578
[28] YanX Q, Tang Z, Zhang L , et al. Depressurization amorphization of single crystal boron carbide[J]. Physical Review Letters, 2009,102(7):075075
[29] FanZ, Yu H, Li C . Interface and grain-boundary amorphization in the Al/Fe bimetallic system during pulsed-magnetic-driven impact[J]. Scripta Materialia, 2015,110:14.
[30] ElderK R, Grant M . Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals.[J]. Physical Review E, 2003,70(1):051605.
[31] YingjunG, Zhirong L, Lilin H , et al. Phase field crystal study of nano-crack growth and branch in materials[J]. Modelling & Simulation in Materials Science & Engineering, 2016,24(5):055010.
[32] HuS, Xi W, Chen Z , et al. Coupled motion of grain boundaries and the influence of microcracks[J]. Computational Materials Science, 2017,132:125.
[33] ZhaoS, Hahn E N, Kad B , et al. Amorphization and nanocrystallization of silicon under shock compression[J]. Acta Materialia, 2016,103:519.
[34] StraumalB B, Mazilkin A A, Protasova S G , et al. Amorphization of crystalline phases in the NdFeB alloy driven by the high pressure torsion[J]. Materials Letters, 2015,161:735.
[35] StraumalB B, Kilmametov A R, Mazilkin A A , et al. Amorphization of NdFeB alloy under the action of high pressure torsion[J]. Materials Letters, 2015,145:63.
[36] FanZhisong, Yu Haiping, Li Chunfeng . Interface and grain boundary amorphization in the AlFe bimetallic system during pulsed magnetic driven impact[J]. Scripta Materialia, 2016,110:14.
[37] DevanathanR, Durham P, Du J , et al. Molecular dynamics simulation of amorphization in forsterite by cosmic rays[J]. Nuclear Instruments & Methods in Physics Research B, 2007,255(1):172.
[38] ZhaoS, Kad B, Hahn E N , et al. Pressure and shear induced amorphization of silicon[J]. Extreme Mechanics Letters, 2015,5:74.
[39] ZhouJ, Averback R S, Bellon P . Stability and amorphization of CuNb interfaces during severe plastic deformation:Molecular dynamics simulations of simple shear[J]. Acta Materialia, 2014,73(4):116.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[9] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[10] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[11] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[12] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[13] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[14] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[15] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed