Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080032-7    https://doi.org/10.11896/cldb.23080032
  金属与金属基复合材料 |
基于场量传递的流动-传热-凝固过程耦合计算模型及其应用
郑莲宝1, 李旺2, 王松伟2,*, 徐勇2, 宋鸿武2
1 华北理工大学现代冶金技术教育部重点实验室,河北 唐山 063200
2 中国科学院金属研究所师昌绪先进材料创新中心,沈阳 110016
Calculation Model Couple Flow, Heat Transfer and Solidification Process Based on the Fields Transfer and Its Application
ZHENG Lianbao1, LI Wang2, WANG Songwei2,*, XU Yong2, SONG Hongwu2
1 Key Laboratory of Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063200, Hebei, China
2 Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 4277KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水平连铸是铜板带铸轧加工流程中的重要环节,其核心物理过程包括流动、传热及凝固,实验研究存在诸多不便和局限性,因此往往采用数值模拟方法对铸坯质量和组织进行分析。为进一步提高模拟准确性和完整性,本工作建立了铜板坯水平连铸流动-传热过程与传热-凝固过程耦合数值模型,并设计了不同网格之间的高精度场传递算法;通过控制输入参数和边界条件实现了流动-传热模型和传热-凝固模型之间温度场量一致性,解决了传统模型无法耦合流场计算凝固组织的难题,并通过生产试验证实了耦合模拟结果的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑莲宝
李旺
王松伟
徐勇
宋鸿武
关键词:  水平连铸  温度场  组织场  数值模拟  场量传递  耦合计算    
Abstract: Horizontal continuous casting is an important step in the casting and rolling process of copper strip. Its core physical process includes flow, heat transfer and solidification. The experimental research is inconvenient and limited, so numerical simulation is often used to analyze the quality and structure of the casting billet. In order to further improve the accuracy and completeness of the simulation, a coupling numerical model of flow-heat transfer process and heat-solidification process of copper slab horizontal continuous casting was established, and a high-precision field transfer algorithm between different grids was designed. By controlling the input parameters and boundary conditions, the consistency of the temperature field between the flow-heat transfer model and the heat transfer-solidification model is achieved, which solves the problem that the traditional model cannot couple the flow field to calculate the solidification microstructure, and the accuracy of the coupled simulation results is confirmed through the production test.
Key words:  horizontal continuous casting    temperature field    microstructure field    numerical simulation    field quantity transfer    coupling calculation
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG21+4  
基金资助: 中国科学院国际合作项目(172GJHZ2022054GC)
通讯作者:  * 王松伟,中国科学院金属研究所助理研究员。2013年沈阳工业大学材料成型及控制工程专业本科毕业,2016年沈阳工业大学材料加工工程专业硕士毕业,2020年中国科学技术大学材料加工工程专业博士毕业后到中国科学院金属研究所工作至今。目前主要从事高性能稀土铜合金组织性能研究及高品质铜材制备加工技术等方面的研究工作。发表论文20余篇,包括Materials、Materials Letters、Transactions of Nonferrous Metals Society of China、Acta Metallurgica Sinica、International Journal of Material Forming等。授权发明专利3项、实用新型专利4项。swwang16b@imr.ac.cn   
作者简介:  郑莲宝,2021年6月于华北理工大学获得工学学士学位。现为华北理工大学冶金与能源学院硕士研究生,在王松伟助理研究员的指导下进行研究。目前主要研究领域为水平连铸铜板坯组织缺陷对轧后带材表面质量的影响。
引用本文:    
郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
ZHENG Lianbao, LI Wang, WANG Songwei, XU Yong, SONG Hongwu. Calculation Model Couple Flow, Heat Transfer and Solidification Process Based on the Fields Transfer and Its Application. Materials Reports, 2024, 38(20): 23080032-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080032  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080032
1 Gandin C A, Rappaz M. Acta Metallurgica et Materialia, 1994, 42(7), 2233.
2 Chen S D, Chen J C. Transactions of Nonferrous Metals Society of China, 2012, 22(6), 1452.
3 Pang R P, Wang F M, Zhang G Q, et al. Acta Metallurgica Sinica, 2013, 49(10), 1234 (in Chinses).
庞瑞朋, 王福明, 张国庆, 等. 金属学报, 2013, 49(10), 1234.
4 Zaeem M A, Yin H B, Felicelli S D. In: Proceedings of the 4th International Multi-Conference on Engineering and Technological Innovation. Orlando, 2011, pp.19.
5 Zaeem M A, Yin H B, Felicelli S D. Applied Mathematical Modelling, 2013, 37(5), 3495.
6 Li Z Q, Li X Q, Wang D X, et al. Hot Working Technology, 2008(7), 4 (in Chinese).
李志强, 李晓桥, 王敦旭, 等. 热加工工艺, 2008(7), 4.
7 Liu J S, Zhang L L, Wang S W, et al. Foundry Technology, 2022, 43(7), 511 (in Chinese).
刘劲松, 张良利, 王松伟, 等. 铸造技术, 2022, 43(7), 511.
8 Cao J S, Yang F, Yu J B, et al. Special Casting and Nonferrous Alloys, 2023, 43(2), 178 (in Chinese).
曹健晟, 杨帆, 余建波, 等. 特种铸造及有色合金, 2023, 43(2), 178.
9 Yang Q B, Wang L H, Zeng H, et al. Foundry Technology, 2022, 43(2), 123 (in Chinese).
杨庆宝, 王兰浩, 曾浩, 等. 铸造技术, 2022, 43(2), 123.
10 Yu K K, Wang S W, Chen S F, et al. The Chinese Journal Nonferrous Metals, 2023, 33(5), 1378 (in Chinses).
于康康, 王松伟, 陈帅峰, 等. 中国有色金属学报, 2023, 33(5), 1378.
11 Pan D Q, Li D X, Niu D X, et al. Special Casting Nonferrous Alloys, 2020, 40(1), 69 (in Chinses).
潘德清, 李道喜, 牛冬鑫, 等. 特种铸造及有色合金, 2020, 40(1), 69.
12 Zhang K. Numerical simulation of copper continuous casting process and optimization of crystallizer parameters. Master’s Thesis, Yanshan University, China, 2019 (in Chinese).
张凯. 铜管水平连铸过程数值模拟及结晶器结构参数优化研究. 硕士学位论文, 燕山大学, 2019.
13 Tan H T. Simulation study on heat transfer and microstructure of continuous casting process for heavy rail steel. Master’s Thesis, Northeastern University, China, 2020 (in Chinese).
谭浩韬. 重轨钢连铸过程凝固传热及组织模拟研究. 硕士学位论文, 东北大学, 2020.
14 Choudhary S K, Mazumdar D. Steel Research, 1995, 66(5), 199.
15 Hu W B. Study on the solidification heat transfer simulation of the round billet continuous casting and its process optimization. Master’s Thesis, Northeastern University, China, 2014 (in Chinese).
胡文兵. 圆坯连铸凝固传热模拟及工艺研究. 硕士学位论文, 东北大学, 2014.
16 Menter F. In: Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando, 1993, pp.2906.
17 Menter F. AIAA Journal, 2002, 40(2), 254.
18 Launder B E, Spalding D B. Lectures in mathematical models of turbulence, Academic Press, London, 1972, pp.169.
19 Wilcox D C. AIAA Journal, 1988, 26(11), 1299.
20 Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 41(2), 345.
21 Lipton J, Glicksman M, Kurz W. Materials Science and Engineering, 1984, 65(1), 57.
22 Kurz W, Giovanola B, Trivedi R. Acta Metallurgica, 1986, 34(5), 823.
23 Pan D Q. Research on continuous casting of Cu-15Ni-8Sn alloy round ingot. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
潘德清. Cu-15Ni-8Sn合金圆锭的连续铸造成形研究. 硕士学位论文, 华南理工大学, 2020.
24 Zhou W G. Numerical simulation and parameter optimization of horizontal continuous casting of cast iron bars. Master’s Thesis, Hebei University of Engineering, China, 2022 (in Chinese).
周武刚. 铸铁型材水平连铸数值模拟及参数优化. 硕士学位论文, 河北工程大学, 2022.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[4] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[5] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[6] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[7] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[8] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[9] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[10] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[11] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[12] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[13] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[14] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[15] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed