Calculation Model Couple Flow, Heat Transfer and Solidification Process Based on the Fields Transfer and Its Application
ZHENG Lianbao1, LI Wang2, WANG Songwei2,*, XU Yong2, SONG Hongwu2
1 Key Laboratory of Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063200, Hebei, China 2 Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract: Horizontal continuous casting is an important step in the casting and rolling process of copper strip. Its core physical process includes flow, heat transfer and solidification. The experimental research is inconvenient and limited, so numerical simulation is often used to analyze the quality and structure of the casting billet. In order to further improve the accuracy and completeness of the simulation, a coupling numerical model of flow-heat transfer process and heat-solidification process of copper slab horizontal continuous casting was established, and a high-precision field transfer algorithm between different grids was designed. By controlling the input parameters and boundary conditions, the consistency of the temperature field between the flow-heat transfer model and the heat transfer-solidification model is achieved, which solves the problem that the traditional model cannot couple the flow field to calculate the solidification microstructure, and the accuracy of the coupled simulation results is confirmed through the production test.
通讯作者:
* 王松伟,中国科学院金属研究所助理研究员。2013年沈阳工业大学材料成型及控制工程专业本科毕业,2016年沈阳工业大学材料加工工程专业硕士毕业,2020年中国科学技术大学材料加工工程专业博士毕业后到中国科学院金属研究所工作至今。目前主要从事高性能稀土铜合金组织性能研究及高品质铜材制备加工技术等方面的研究工作。发表论文20余篇,包括Materials、Materials Letters、Transactions of Nonferrous Metals Society of China、Acta Metallurgica Sinica、International Journal of Material Forming等。授权发明专利3项、实用新型专利4项。swwang16b@imr.ac.cn
郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
ZHENG Lianbao, LI Wang, WANG Songwei, XU Yong, SONG Hongwu. Calculation Model Couple Flow, Heat Transfer and Solidification Process Based on the Fields Transfer and Its Application. Materials Reports, 2024, 38(20): 23080032-7.
1 Gandin C A, Rappaz M. Acta Metallurgica et Materialia, 1994, 42(7), 2233. 2 Chen S D, Chen J C. Transactions of Nonferrous Metals Society of China, 2012, 22(6), 1452. 3 Pang R P, Wang F M, Zhang G Q, et al. Acta Metallurgica Sinica, 2013, 49(10), 1234 (in Chinses). 庞瑞朋, 王福明, 张国庆, 等. 金属学报, 2013, 49(10), 1234. 4 Zaeem M A, Yin H B, Felicelli S D. In: Proceedings of the 4th International Multi-Conference on Engineering and Technological Innovation. Orlando, 2011, pp.19. 5 Zaeem M A, Yin H B, Felicelli S D. Applied Mathematical Modelling, 2013, 37(5), 3495. 6 Li Z Q, Li X Q, Wang D X, et al. Hot Working Technology, 2008(7), 4 (in Chinese). 李志强, 李晓桥, 王敦旭, 等. 热加工工艺, 2008(7), 4. 7 Liu J S, Zhang L L, Wang S W, et al. Foundry Technology, 2022, 43(7), 511 (in Chinese). 刘劲松, 张良利, 王松伟, 等. 铸造技术, 2022, 43(7), 511. 8 Cao J S, Yang F, Yu J B, et al. Special Casting and Nonferrous Alloys, 2023, 43(2), 178 (in Chinese). 曹健晟, 杨帆, 余建波, 等. 特种铸造及有色合金, 2023, 43(2), 178. 9 Yang Q B, Wang L H, Zeng H, et al. Foundry Technology, 2022, 43(2), 123 (in Chinese). 杨庆宝, 王兰浩, 曾浩, 等. 铸造技术, 2022, 43(2), 123. 10 Yu K K, Wang S W, Chen S F, et al. The Chinese Journal Nonferrous Metals, 2023, 33(5), 1378 (in Chinses). 于康康, 王松伟, 陈帅峰, 等. 中国有色金属学报, 2023, 33(5), 1378. 11 Pan D Q, Li D X, Niu D X, et al. Special Casting Nonferrous Alloys, 2020, 40(1), 69 (in Chinses). 潘德清, 李道喜, 牛冬鑫, 等. 特种铸造及有色合金, 2020, 40(1), 69. 12 Zhang K. Numerical simulation of copper continuous casting process and optimization of crystallizer parameters. Master’s Thesis, Yanshan University, China, 2019 (in Chinese). 张凯. 铜管水平连铸过程数值模拟及结晶器结构参数优化研究. 硕士学位论文, 燕山大学, 2019. 13 Tan H T. Simulation study on heat transfer and microstructure of continuous casting process for heavy rail steel. Master’s Thesis, Northeastern University, China, 2020 (in Chinese). 谭浩韬. 重轨钢连铸过程凝固传热及组织模拟研究. 硕士学位论文, 东北大学, 2020. 14 Choudhary S K, Mazumdar D. Steel Research, 1995, 66(5), 199. 15 Hu W B. Study on the solidification heat transfer simulation of the round billet continuous casting and its process optimization. Master’s Thesis, Northeastern University, China, 2014 (in Chinese). 胡文兵. 圆坯连铸凝固传热模拟及工艺研究. 硕士学位论文, 东北大学, 2014. 16 Menter F. In: Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando, 1993, pp.2906. 17 Menter F. AIAA Journal, 2002, 40(2), 254. 18 Launder B E, Spalding D B. Lectures in mathematical models of turbulence, Academic Press, London, 1972, pp.169. 19 Wilcox D C. AIAA Journal, 1988, 26(11), 1299. 20 Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 41(2), 345. 21 Lipton J, Glicksman M, Kurz W. Materials Science and Engineering, 1984, 65(1), 57. 22 Kurz W, Giovanola B, Trivedi R. Acta Metallurgica, 1986, 34(5), 823. 23 Pan D Q. Research on continuous casting of Cu-15Ni-8Sn alloy round ingot. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese). 潘德清. Cu-15Ni-8Sn合金圆锭的连续铸造成形研究. 硕士学位论文, 华南理工大学, 2020. 24 Zhou W G. Numerical simulation and parameter optimization of horizontal continuous casting of cast iron bars. Master’s Thesis, Hebei University of Engineering, China, 2022 (in Chinese). 周武刚. 铸铁型材水平连铸数值模拟及参数优化. 硕士学位论文, 河北工程大学, 2022.