Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040023-8    https://doi.org/10.11896/cldb.22040023
  无机非金属及其复合材料 |
多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟
梁宁慧1,2,*, 毛金旺1, 游秀菲1, 刘新荣1,2, 周侃1
1 重庆大学土木工程学院,重庆 400045
2 库区环境地质灾害防治国家地方联合工程研究中心,重庆 400045
Flexural Fatigue Life Test and Numerical Simulation of Multi-scale Polypropylene Fiber Reinforced Concrete
LIANG Ninghui1,2,*, MAO Jinwang1, YOU Xiufei1, LIU Xinrong1,2, ZHOU Kan1
1 School of Civil Engineering, Chongqing University, Chongqing 400045, China
2 National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 10644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究多尺度聚丙烯纤维混凝土的弯曲疲劳性能,开展基准混凝土、聚丙烯粗纤维混凝土及多尺度聚丙烯纤维混凝土的静载试验及不同应力水平(0.75、0.80、0.85)下的弯曲疲劳试验,建立弯曲疲劳寿命方程,并结合ABAQUS与FE-SAFE软件建立纤维混凝土梁的三点弯曲疲劳有限元模型。结果表明:聚丙烯纤维的掺入,尤其是多尺度聚丙烯纤维混掺显著增强了混凝土基体的抗折、抗疲劳性能。双对数lgS-lgN疲劳方程能够较好地描述多尺度聚丙烯纤维混凝土的应力水平与疲劳寿命的相关性,使用lgS-lgN疲劳方程计算得到200万次循环荷载作用下多尺度聚丙烯纤维混凝土的疲劳强度最高,为3.91 MPa。三组试件疲劳寿命的数值模型预测值均介于实测疲劳寿命的最大值与最小值之间,并接近于疲劳寿命平均值,该模型为多尺度聚丙烯纤维混凝土的疲劳寿命预测提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宁慧
毛金旺
游秀菲
刘新荣
周侃
关键词:  多尺度  聚丙烯纤维混凝土  弯曲疲劳  疲劳寿命预测  数值模拟    
Abstract: To study the flexural fatigue properties of multi-scale polypropylene fiber reinforced concrete, static load tests and flexural fatigue tests under different stress levels (0.75, 0.80, 0.85) of reference concrete, coarse polypropylene fiber reinforced concrete and multi-scale polypropy-lene fiber reinforced concrete were carried out. The flexural fatigue life equation was established, and the three-point flexural fatigue numerical simulation model of fiber reinforced concrete beam was established by combining ABAQUS and FE-Safe software. The results show that the incorporation of polypropylene fiber, especially multi-scale polypropylene fiber, significantly improves the flexural and fatigue resistance of concrete matrix. The lgS-lgN fatigue equation can be used for statistics the fatigue life of multi-scale polypropylene fiber reinforced concrete. According to the equation, the fatigue strength of multi-scale polypropylene fiber reinforced concrete under 2 million cyclic loading is the highest, which is 3.91 MPa. The predicted fatigue life of the three groups specimens is between the maximum and minimum values of the experimental results, and closes to the average value of fatigue life. The model provides a basis for the fatigue life prediction of multi-scale polypropylene fiber reinforced concrete.
Key words:  multi-scale    polypropylene fiber reinforced concrete    flexural fatigue    fatigue life prediction    numerical simulation
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU502  
基金资助: 国家自然科学基金(41772319;52074042)
通讯作者:  *梁宁慧,副教授,硕士研究生导师。2014年获重庆大学土木工程专业博士学位。主要从事混凝土结构教学工作和聚丙烯纤维混凝土在地下结构工程中的应用。作为主研人员完成国家自然科学基金、重庆市科委自然科学基金计划面上项目等科研课题10余项,其中获教育部科技进步一等奖1项(排名第5)。发表学术论文60余篇。liangninghui0705@163.com   
引用本文:    
梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
LIANG Ninghui, MAO Jinwang, YOU Xiufei, LIU Xinrong, ZHOU Kan. Flexural Fatigue Life Test and Numerical Simulation of Multi-scale Polypropylene Fiber Reinforced Concrete. Materials Reports, 2024, 38(4): 22040023-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040023  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22040023
1 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101, 741.
2 Yildizel S A, Timur O, Ozturk A U. Mechanics of Composite Materials, 2018, 54(2), 251.
3 Jia Y, Tang L, Xu B H, et al. Journal of Nondestructive Evaluation, 2019, 38(1), 21.
4 Chasioti S G, Vecchio F J. Aci Structural Journal, 2017, 114(1), 209.
5 Deng Z Y, Liu X R, Yang X, et al. Structural Concrete, 2021, 22(1), 396.
6 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1155(in Chinese).
张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1155.
7 Li L, Li Z L, Gao D Y, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2326(in Chinese).
李黎, 李宗利, 高丹盈, 等. 复合材料学报, 2021, 38(7), 2326.
8 Gao D Y, Zhao L P, Chen G. China Civil Engineering Journal, 2017, 50(9), 46(in Chinese).
高丹盈, 赵亮平, 陈刚. 土木工程学报, 2017, 50(9), 46.
9 Zhang Y L, Zhan S L, Qian X Q, et al. New Building Materials, 2006(1), 25(in Chinese).
张佚伦, 詹树林, 钱晓倩, 等. 新型建筑材料, 2006(1), 25.
10 Oh B H, Kim J C, Choi Y C. Engineering Fracture Mechanics, 2007, 74(1-2), 243.
11 Liang N H, Liu X R, Sun J. Trends in Building Materials Research, Pts 1 and 2, 2012, 450-451, 168.
12 Liang N H, Liu X R, Sun J. Journal of China Coal Society, 2012, 37(8), 1304(in Chinese).
梁宁慧, 刘新荣, 孙霁. 煤炭学报, 2012, 37(8), 1304.
13 Liang N H, Dai J F, Liu X R, et al. Magazine of Concrete Research, 2019, 71(9), 468.
14 Liang N H, Yan R, Tian S, et al. Journal of Hunan University(Natural Sciences), 2021, 48(9), 155(in Chinese).
梁宁慧, 严如, 田硕, 等. 湖南大学学报(自然科学版), 2021, 48(9), 155.
15 Liang N H, Hu Y, Zhong Y, et al. Journal of Chongqing University, 2019, 42(11), 38(in Chinese).
梁宁慧, 胡杨, 钟杨, 等. 重庆大学学报, 2019, 42(11), 38.
16 Singh S P, Kaushik S K. Cement and Concrete Composites, 2003, 25(7), 779.
17 Deng Z C, Dong Z F, Qi D H. Highway, 2018, 63(4), 200(in Chinese).
邓宗才, 董智福, 戚德海. 公路, 2018, 63(4), 200.
18 Mei Y J, Zhao X, Dai C, et al. Journal of Highway and Transportation Research and Development, 2015, 32(9), 20(in Chinese).
梅迎军, 赵翔, 代超, 等. 公路交通科技, 2015, 32(9), 20.
19 Chang J W. Experimental research、predict and analysis on fatigue performance of hybrid fiber reinforced concrete. Master’s Thesis, Wuhan University of Technology, China, 2012(in Chinese).
常佳伟. 混杂纤维混凝土弯曲疲劳特性试验研究及预测分析. 硕士学位论文, 武汉理工大学, 2012.
20 Bawa S, Singh S P. Innovative Infrastructure Solutions, 2019, 4(1), 57.
21 Zhe H D. Study on longitudinal crack propagation law and fatigue life of concrete in tunnel bottom. Master’s Thesis, Chang’an University, China, 2019(in Chinese).
折惠东. 隧道铺底混凝土纵向裂纹扩展规律及疲劳寿命研究. 硕士学位论文, 长安大学, 2019.
22 Xue G, Sun L S, Liu J X, et al. 2021, 38(11), 149(in Chinese).
薛刚, 孙立所, 刘佳香, 等. 长江科学院院报, 2021, 38(11), 149.
23 Zhu H T, Gao D Y, Wang Z Q. Journal of Building Structures, 2010, 31(1), 41(in Chinese).
朱海堂, 高丹盈, 王占桥. 建筑结构学报, 2010, 31(1), 41.
24 Liang N H, Zhong Y, Liu X R. Journal of Central South University(Science and Technology), 2017, 48(10), 2783(in Chinese).
梁宁慧, 钟杨, 刘新荣. 中南大学学报(自然科学版), 2017, 48(10), 2783.
25 Liu X R, Ke W, Liang N H, et al. Materials Reports, 2018, 32(S1), 484(in Chinese).
刘新荣, 柯炜, 梁宁慧, 等. 材料导报, 2018, 32(S1), 484.
26 中华人民共和国国家发展和改革委员会. DL/T 5330-2015, 水工混凝土配合比设计规程, 中国电力出版社, 2015.
27 中国工程建设标准化协会. CECS 13: 2009, 纤维混凝土试验方法标准, 中国计划出版社, 2009.
28 中华人民共和国住房和城乡建设部. GB/T 50081-2019, 混凝土物理力学性能试验方法标准, 中国建筑工业出版社, 2019.
29 Jin W. Investigation of the bending fatigue performance and cracking processes of ultra-high performance concrete. Master’s Thesis, South China University of Technology, China, 2018(in Chinese).
金文. 超高性能混凝土弯曲疲劳性能及破坏中裂缝发展研究. 硕士学位论文, 华南理工大学, 2018.
30 Xiao J Z, Li H, Yang Z J. Construction and Building Materials, 2013, 38, 681.
31 Gong J X, Huang C K, Zhao G F. China Civil Engineering Journal, 2001, 34(4), 72(in Chinese).
贡金鑫, 黄承逵, 赵国藩. 土木工程学报, 2001, 34(4), 72.
32 Huang M, Chen G, Zhao Y R. Journal of Henan Polytechnic University(Natural Science), 2022, 41(1), 159(in Chinese).
皇民, 陈刚, 赵玉如. 河南理工大学学报(自然科学版), 2022, 41(1), 159.
33 Liang N H, Mao J W, Yan R. et al. Frontiers of Structural and Civil Engineering, 2022, 16, 316.
34 Johnston C D, Zemp R W. Aci Materials Journal, 1991, 88(4), 374.
35 中华人民共和国住房和城乡建设部. GB 50010-2010, 混凝土结构设计规范, 中国建筑工业出版社, 2010.
36 Liang N H. The mechanics performance test of multi-scale polypropylene fiber concrete and the study of tension and compression damage constitutive mode. Ph. D. Thesis, Chongqing University, China, 2014(in Chinese).
梁宁慧. 多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究. 博士学位论文, 重庆大学, 2014.
37 Miao Q X. Experimental study on tensile and compression properties of multi-scale polypropylene fiber roller compacted concrete. Master’s Thesis, Chongqing University, China, 2019(in Chinese).
缪庆旭. 多尺度聚丙烯纤维干硬性混凝土拉压性能试验研究. 硕士学位论文, 重庆大学, 2019.
38 Liu X R, Chen P, Deng Z Y, et al. Acta Materiae Compositae Sinica, 2021, 38(12), 4349(in Chinese).
刘新荣, 陈鹏, 邓志云, 等. 复合材料学报, 2021, 38(12), 4349.
[1] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[2] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[3] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[4] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[5] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[6] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[7] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[8] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[9] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[10] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[11] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[12] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[13] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed