Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040062-6    https://doi.org/10.11896/cldb.23040062
  无机非金属及其复合材料 |
回转窑中回收炉气与煤粉混合燃烧的数值模拟
赵楠, 刘鹏*, 王林, 林书行, 李昊阳
沈阳化工大学机械与动力工程学院,沈阳 110142
Numerical Simulation of Co-combustion with Recovered Furnace Gas and Pulverized Coal in a Rotary Kiln
ZHAO Nan, LIU Peng*, WANG Lin, LIN Shuhang, LI Haoyang
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
下载:  全 文 ( PDF ) ( 9723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对回转窑-矿热炉工艺中工业炉窑的能耗大、废弃物排放量大且余热余能利用率低等问题,本研究设计了一款回转窑五通道燃烧器并将其用于炉气和煤粉混合燃烧,采用计算流体动力学(CFD)数值模拟的方法对回转窑内的气固两相燃料混合燃烧过程进行数值研究,分析了在气固两相燃料不同配比的工况下回转窑内温度场、流场、燃烧特性以及NOx的变化规律。结果表明:掺入气体燃料有助于提高煤粉燃烧速率,改善窑内温度分布,降低NOx排放量,火焰更加容易控制,呈现“棒槌形”。随着气体燃料的比例不断增加,高温区范围增大,焙烧区长度由9.16 m增加至14.17 m,炉窑出口处NOx的含量由634 mg/m3降低至29.8 mg/m3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵楠
刘鹏
王林
林书行
李昊阳
关键词:  回转窑-矿热炉工艺(RKEF)  多相流  混合燃烧  数值模拟    
Abstract: At present, the rotary kiln-electric furnace process has many problems such as high energy consumption, high waste emissions, low waste heat and energy utilization rate of industrial furnaces. Thus, the study designed a five-channels burner model for the co-combustion of furnace gas and pulverized coal in rotary kiln. The co-combustion process of the gas-solid fuel in the rotary kiln was investigated by computational fluid dynamics numerical simulation method. The temperature field, flow field, combustion characteristics and NOx changes in the rotary kiln were analyzed under different blending ratios of gas-solid fuel. The results show that the addition of gas fuel helps to increase the combustion rate of pulverized coal and improve the temperature distribution in the kiln. Besides, the addition of gas fuel can reduce NOx emission and make the flame more controllable, showing as a ‘wooden club shape’. With increasing the proportion of gas fuel, the high temperature zone of the rotary kiln increases gradually, and the length of the roasting zone increases from 9.16 m to 14.17 m. Moreover, the NOx emission at the kiln exit decreases from 634 mg/m3 to 29.8 mg/m3.
Key words:  rotary kiln-electric furnace (RKEF)    multiphase flow    co-combustion    numerical simulation
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TF551  
基金资助: 辽宁省教育厅面上基金(LJKMZ20220775)
通讯作者:  *刘鹏,沈阳化工大学机械与动力工程学院讲师。2009年06月沈阳化工大学热能与动力工程专业本科毕业,2009年06月东北大学动力工程及工程热物理专业硕士毕业,2017年10月东北大学有色金属冶金专业博士毕业后到沈阳化工大学工作至今,2020—2023年博士后在站,大连华锐重工集团(工作站)-东北大学(流动站)联合培养。目前主要从事金属冶炼过程传热传质模型、工业炉窑热工和流程节能系统研究等方面的基础研究。已在国内外期刊上发表5篇SCI(2篇第一作者)、2篇EI、1篇核心和7篇专利等学术成果。liu_peng86@163.com.   
作者简介:  赵楠,2020年06月于中北大学获得工学学士学位。现为沈阳化工大学机械与动力工程学院研究生,在刘鹏讲师的指导下进行研究。目前主要研究领域为回转窑内气固混合燃烧。
引用本文:    
赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
ZHAO Nan, LIU Peng, WANG Lin, LIN Shuhang, LI Haoyang. Numerical Simulation of Co-combustion with Recovered Furnace Gas and Pulverized Coal in a Rotary Kiln. Materials Reports, 2024, 38(16): 23040062-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040062  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23040062
1 Liu P. Synergy of preheating reduction with electric furnace process, and thermal characteristics of kiln-furnace. Ph. D. Thesis, Northeastern University, China, 2019 (in Chinese).
刘鹏. 预热还原与矿热炉流程匹配及炉窑热工特性研究. 博士学位论文, 东北大学, 2019.
2 Wang C H, Chen W Z, Jia F R, et al. Journal of Chemical Industry and Engineering (China), 2010, 61(6), 1379 (in Chinese).
王春华, 陈文仲, 贾冯睿, 等. 化工学报, 2010, 61(6), 1379.
3 Wang J Y. Analysis of residual heat of mineral furnace and Study on energy saving by SPSS. Master’s Thesis, Kunming University of Science and Technology, China, 2014 (in Chinese).
王俊勇. 矿热炉余热分析及SPSS节能研究. 硕士学位论文, 昆明理工大学, 2014.
4 Gaurav G K. Journal of Tai-wan Institute of Chemical Engineers, 2016, 63, 473.
5 Wang M, Liao B, Liu Y, et al. Applied Thermal Engineering, 2016, 103, 491.
6 Granados D A, Chejine F, Mejia J M. Applied Energy, 2015, 158, 107.
7 Ma A C. Numerical simulation and optimization of fluid flow, heat transfer and coal combustion in alumina clinker rotary kiln. Ph. D. Thesis, Central South University, China, 2007 (in Chinese).
马爱纯. 熟料窑内流动、传热和煤粉燃烧的数值模拟和优化研究. 博士学位论文, 中南大学, 2007.
8 Elattar H F, Stanev R, Specht E, et al. Computers & Fluids, 2014, 102, 62.
9 Xu S S, Shi Y B, Huang R S, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(10), 2636 (in Chinese).
徐顺生, 石永彬, 黄日升, 等. 硅酸盐通报, 2014, 33(10), 2636.
10 Macphee James, Sellier Mathieu, Jermy Mark, et al. Progress in Computational Fluid Dynamics, 2010, 10, 384.
11 Mikulcic H, Cerinski D, Baleta J, et al. Chemical Engineering & Technology, 2019, 42(12), 2539.
12 Ariyaratne W, Malagalage A, Melaaen M C, et al. International Journal of Modeling and Optimization, 2014, 4(4), 263.
13 Liao B. Establishment of mathematical model of oxygen-rich combustion in cement rotary kiln. Master’s Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
廖斌. 水泥回转窑富氧燃烧数学模型的建立. 硕士学位论文, 昆明理工大学, 2016.
14 Kangwanpongpan T, Silva R C D, Krautz H J. Fuel & Energy Abstracts, 2014, 41(1), 244.
15 Li Q L, Mei S X, Xie J L, et al. The Chinese Journal of Process Engineering, 2022, 22(11), 1565 (in Chinese).
李全亮, 梅书霞, 谢峻林, 等. 过程工程学报, 2022, 22(11), 1565.
16 Qin Z H. Numerical simulation of nitrogen oxides formation and control technology for four-channel burner in rotary cement kiln. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2011 (in Chinese).
秦中华. 水泥回转窑四通道燃烧器NOx生成与控制的数值模拟. 博士学位论文, 华中科技大学, 2011.
17 Sazhin S S. Fuel, 1996, 75(3), 289.
18 Liao B, Qing S, Hu P, et al. Materials Reports, 2015, 29(26), 202 (in Chinese).
廖斌, 卿山, 胡平, 等. 材料导报, 2015, 29(26), 202.
19 Liu Z H, Ma X B, Zhu D Q, et al. Journal of Central South University(Science and Technology), 2011, 42(10), 2905 (in Chinese).
刘志宏, 马小波, 朱德庆, 等. 中南大学学报(自然科学版), 2011, 42(10), 2905.
20 Liu B, Zhou W Z, Zhao P C, et al. Journal of Central South University(Science and Technology), 2019, 50(5), 1235 (in Chinese).
刘彬, 周武洲, 赵朋程, 等. 中南大学学报(自然科学版), 2019, 50(5), 1235.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[4] 齐亚兵, 贾宏磊. 微通道萃取技术的研究进展[J]. 材料导报, 2024, 38(5): 22090187-8.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[7] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[8] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[9] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[10] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[11] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[12] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[13] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[14] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[15] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed