Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040152-5    https://doi.org/10.11896/cldb.23040152
  无机非金属及其复合材料 |
镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究
刘向阳1, 王议2, 夏爽1, 刘中清1,*
1 四川大学化学工程学院,成都 610065
2 四川轻化工大学化学工程学院,四川 自贡 643000
Optimization of Growth and Electrocatalytic Oxygen Evolution of Nickel-Iron Dihydroxide by Response Surface Method
LIU Xiangyang1, WANG Yi2, XIA Shuang1, LIU Zhongqing1,*
1 College of Chemical Engineering, Sichuan University, Chengdu 610065, China
2 College of Chemical Engineering, Sichuan University of Science & Technology, Zigong 643000, Sichuan, China
下载:  全 文 ( PDF ) ( 11923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用腐蚀工程制备了层状镍铁双氢氧化物电催化剂,利用X光衍射、场发射扫描电镜、高分辨透射电镜和光电子能谱等对样品物理化学特性进行了表征,采用线性伏安特性曲线、塔菲尔曲线、电化学阻抗谱、循环伏安特性以及恒电流下电势-时间曲线对样品电催化析氧特性进行了详细分析。在单因子实验的基础上,以50 mA·cm-2对应析氧过电位为响应因子,用响应曲面法对影响催化剂性能的主要因素进行了优化,建立了泡沫镍铁腐蚀后析氧过电位的多项式模型,得出的优化制备条件为腐蚀温度80 ℃、时间9 h、NiSO4浓度9 mmol·L-1。在该条件下制备的样品在10 mA·cm-2下的过电位为200 mV,Tafel斜率为52.5 mV·dec-1;50 mA·cm-2电流密度下经过48 h连续测试,其OER催化活性仍能保持在95%,比起商用RuO2电极显示出优良的电催化活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘向阳
王议
夏爽
刘中清
关键词:  镍铁双氢氧化物  腐蚀工程  响应曲面法  电催化  析氧反应    
Abstract: The layered nickel-iron dihydroxide electrocatalysts were prepared by corrosion engineering. The physicochemical properties of the samples were characterized by X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and photoelectron spectroscopy. Linear voltammetry characteristic curve, Tafel curve, electrochemical impedance spectrum, cyclic voltammetry cha-racteristic and constant-current potential-time curve were used to analyze the electrocatalytic oxygen evolution characteristics of samples in detail. On the basis of single factor experiment, with 50 mA·cm-2 corresponding to the oxygen evolution potential for response factor, by using the response surface method on the main factors affecting the catalyst performance is optimized, established the oxygen evolution after the foam nickel iron corrosion potential of the polynomial model. And the corrosion temperature of 80 ℃, time of 9 h, NiSO4 concentration of 9 mmol·L-1 are the optimization of the preparation conditions. The sample prepared under this condition has an overpotential of 200 mV at 10 mA·cm-2 and a Tafel slope of 52.5 mV·dec-1. After 48 h continuous testing at 50 mA·cm-2 current density, the OER catalytic activity remaines at 95%, showing better electrocatalytic activity than the commercial RuO2 electrode.
Key words:  nickel-iron dihydroxide    corrosion engineering    response surface method    electrocatalysis    oxygen evolution reaction
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB321  
通讯作者:  *刘中清,四川大学化学工程学院教授、博士研究生导师。2000年硕士毕业于中南大学,获得有色金属冶金硕士学位。2007年毕业于北京科技大学,获得材料学博士学位,毕业后到四川大学工作至今。目前主要研究方向为纳米材料的制备、性能及在催化合成、催化降解、水分解及太阳能电池等方面的应用。liuzqhgxy@scu.edu.cn   
作者简介:  刘向阳,2019年6月于北部湾大学获得工学学士学位。现为四川大学化学工程学院硕士研究生,在刘中清教授的指导下进行研究。目前主要研究领域为设计碱性电解水制氢中析氧反应催化剂。
引用本文:    
刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
LIU Xiangyang, WANG Yi, XIA Shuang, LIU Zhongqing. Optimization of Growth and Electrocatalytic Oxygen Evolution of Nickel-Iron Dihydroxide by Response Surface Method. Materials Reports, 2024, 38(16): 23040152-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040152  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23040152
1 Song J, Wei C, Huang Z-F, et al. Chemical Society Reviews, 2020, 49(7), 2196.
2 Gao S, Wang B, Liu X, et al. Nanoscale, 2018, 10(21), 10288.
3 Fan Y, Zhang X, Zhang Y, et al. Journal of Colloid and Interface Science, 2021, 604, 508.
4 Wu Z, Lu X F, Zang S, et al. Advanced Functional Materials, 2020, 30(15), 1910274.
5 Du F, Liu S, Gu J J, et al. Chinese Journal of Inorganic Chemistry, 2021(5), 37 (in Chinese).
杜芳, 刘帅, 古京九, 等. 无机化学学报, 2021(5), 37.
6 Zhang T R, Wang S Y. Acta Physico-Chimica Sinica, 2021, 37(7), 3 (in Chinese).
张铁锐, 王双印. 物理化学学报, 2021, 37(7), 3.
7 Liao C, Yang B, Zhang N, et al. Advanced Functional Materials, 2019, 29(40), 1904020.
8 Li C, Chen J, Wu Y, et al. International Journal of Hydrogen Energy, 2019, 44(5), 2656.
9 Duan Y, Sun S, Sun Y, et al. Advanced Materials, 2019, 31(12), 1807898.
10 Wang Y, Chen G, Xie J, et al. International Journal of Hydrogen Energy, 2022, 47(92), 39108.
11 Wang Y, Wang B, Liu X, et al. ACS Applied Energy Materials, 2022, 5(7), 8686.
12 Acharya P, Manso R H, Hoffman A S, et al. ACS Catalysis, 2022, 12(3), 1992.
13 Wu X, Li M, Li Q, et al. International Journal of Hydrogen Energy, 2022, 47(10), 6691.
14 Zhang H, Pan Q, Sun Z, et al. Nanoscale, 2019, 11(24), 11505.
15 Wang R, Yang Y, Sun Z, et al. International Journal of Hydrogen Energy, 2022, 47(5), 2958.
16 Lan W, Li D, Wang W, et al. International Journal of Hydrogen Energy, 2020, 45(1), 412.
17 Xu X, Wang R, Chen S, et al. Inorganic Chemistry Frontiers, 2022, 9(21), 5507.
18 Wang R, Yang Y, Xu X, et al. Inorganic Chemistry Frontiers, 2023, 10(4), 1348.
19 Xie J, Qu H, Lei F, et al. Journal of Materials Chemistry A, 2018, 6(33), 16121.
20 Yu L, Zhou H, Sun J, et al. Energy & Environmental Science, 2017, 10(8), 1820.
21 Niu S, Jiang W J, Tang T, et al. Advanced Functional Materials, 2019, 29(36), 1902180.
22 Liu X, Gong M, Deng S, et al. Advanced Functional Materials, 2021, 31(11), 2009032.
23 Hao S, Chen L, Yu C, et al. ACS Energy Letters, 2019, 4(4), 952.
24 Hao S, Zheng G, Gao S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14361.
25 Zhu W X, Zhang T S, Zhang Y, et al. Applied Catalysis B, Environmental, 2019, 244, 844.
26 Liu X, Gong M, Xiao D, et al. Small, 2020, 16(24), 2000663.
27 Zhao W, Xu H, Luan H, et al. Advanced Energy Materials, 2022, 12(2), 2102372.
28 Liu Y, Liang X, Gu L, et al. Nature Communication, 2018, 9(1), 2609.
29 Wang J, Ji L, Zuo S, et al. Advanced Energy Materials, 2017, 7(14), 1700107.
30 Yamashita T, Hayes P. Applied surface science, 2008, 254(8), 2441.
31 Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7), 2717.
32 Wang Y, Xie C, Zhang Z, et al. Advanced Functional Materials, 2018, 28(4), 1703363.
33 Cui C, Liu Y, Mehdi S, et al. Applied Catalysis B, Environmental, 2020, 265, 118612.
34 Huang J, Han J, Wang R, et al. ACS Energy Letters, 2018, 3(7), 1698.
35 Shinagawa T, Garcia-Esparza A T, Takanabe K. Scientific Reports, 2015, 5(1), 13801.
36 Gao Y, Li H, Yang G. Crystal Growth & Design, 2015, 15(9), 4475.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[8] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[9] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[10] 狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
[11] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[12] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[13] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[14] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[15] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed