Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 22080121-11    https://doi.org/10.11896/cldb.22080121
  无机非金属及其复合材料 |
硼/磷掺杂电解水析氢金属催化剂的研究现状与进展
庄明兴1,2,†, 卡盖·索音图1,†, 付文英1,2, 司司1, 余添玉1, 杨俊东1, 章剑1, 梁宇欣1, 赵新生1, 魏永生1,*
1 江苏师范大学物理与电子工程学院,江苏 徐州 221116
2 徐州徐工新能源汽车有限公司,江苏 徐州 221116
Progress of Metal Catalysts Doping with Boron, Phosphorus Elements for Hydrogen Evolution Reaction in Water Electrolysis
ZHUANG Mingxing1,2,†, KA GAI·Suoyintu1,†, FU Wenying1,2, SI Si1, YU Tianyu1, YANG Jundong1, ZHANG Jian1, LIANG Yuxin1, ZHAO Xinsheng1, WEI Yongsheng1,*
1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
2 Xuzhou XCMG New Energy Vehicle Co.,Ltd., Xuzhou 221116, Jiangsu,China
下载:  全 文 ( PDF ) ( 31771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能是一种绿色低碳、高能量利用率的二次能源,是国家实现“双碳”战略的重要技术途径之一。目前电解水制氢研究广泛,贵金属催化剂催化活性高,但是由于储量稀少、价格昂贵,无法大规模推广应用。因此,开发低成本催化剂迫在眉睫。本文综述了金属催化剂、硼元素掺杂催化剂、磷元素掺杂催化剂和硼/磷元素共掺杂催化剂用于电解水析氢的研究进展。在金属催化剂中掺杂B可以增加电子缺陷、提高催化剂电化学表面积和降低反应电阻来提高析氢性能;掺杂P有利于水解离、中间体Hads的形成,有效改善催化剂的析氢催化反应动力学;而B/P共掺杂催化剂中B、P元素间及其与金属之间的协同效应进一步提高了催化活性。本文还分析了B掺杂催化剂、P掺杂催化剂和B/P共掺杂催化剂电解水析氢的催化反应机理,对硼/磷元素掺杂催化剂在电解水析氢上的应用前景和发展趋势进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄明兴
卡盖·索音图
付文英
司司
余添玉
杨俊东
章剑
梁宇欣
赵新生
魏永生
关键词:  电解水  析氢反应  电催化剂  B/P共掺杂催化剂    
Abstract: Hydrogenhas higher energy density with low-carbon, and is regarded as one of green energy technology for China ‘Double Carbon' plan. Hydrogen production by water electrolysis is called Green Hydrogen, which is an important hydrogen source for fuel cells. At present, precious metal catalyst is mainly used in hydrogen evolution reaction. Its high price has prevented the large-scale application of electrolytic water. Therefore, it is extremely urgent to develop low-cost catalysts. In this paper, non-precious metal catalysts, B doped catalysts, P doped catalysts and B/P co-doped catalysts for the hydrogen evolution are reviewed. The main role of B element doping in metal catalysts can increase the electron defects, the electrochemical surface area, and decrease the reaction resistance to improve the catalytic activity of hydrogen evolution. Doping P element facilitates the formation of intermediate Hads, and effectively improves the catalytic kinetics of the hydrogen evolution. B/P co-doped catalysts show better catalytic activity even than B doping and P doping non-noble metal catalysts due to the synergistic effect between them and mental catalyst. The reaction mechanism of B doping and P doping non-noble metal catalysts are discussed. Finally, the prospect of B/P co-doped catalysts for the hydrogen evolution is looked forward.
Key words:  water electrolysis    HER    electrocatalysts    B/P co-doped catalysts
发布日期:  2023-09-06
ZTFLH:  TK91  
基金资助: 国家自然科学基金(21606115);江苏省科技计划项目(BE2020759);江苏省高校基础科学(自然科学)研究项目(23KJA480001);徐州市科技计划项目(KC20195);江苏师范大学研究生科研与实践创新计划项目(2021XKT1225;2022XKT1324)
通讯作者:  *魏永生,江苏师范大学物理与电子工程学院副教授、硕士研究生导师。2006年7月本科毕业于中国矿业大学,2011年7月在北京交通大学取得博士学位,2008—2009年在美国迈阿密大学进行博士联合培养。2013年北京化工大学博士后出站。主要从事氢燃料电池、电解水制氢催化剂、电化学还原制备硼氢化钠的研究工作。先后主持国家自然科学基金青年项目、江苏省自然科学基金青年项目等科研课题,参与国家863项目、国际合作项目、国家自然科学基金面上项目等项目。迄今在ACS Applied Materials & Interface、Journal of Power Sources、International Journal of Hydrogen Energy等国内外学术期刊发表论文80余篇,他引1 000余次。weiys@jsnu.edu.cn   
作者简介:  庄明兴,中级工程师,徐州徐工新能源汽车有限公司技术总监、江苏师范大学储制氢技术研究企业专家顾问。2008年7月本科毕业于山东交通学院车辆工程专业,2016年12月在长安大学取得硕士学位,从事新能源汽车行业十四年,主要从事氢燃料汽车、纯电动汽车的研究工作。先后主持开发新能源客车、新能源重卡六十多款,国家专利二十多项,参与省科技厅项目、国际合作等项目。
卡盖·索音图,2017年 6月毕业于西南民族大学,获得理学学士学位。现为江苏师范大学物理与电子工程学院硕士研究生,在魏永生副教授的指导下进行研究。目前主要研究领域为电解水制氢催化剂。
†共同第一作者
引用本文:    
庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
ZHUANG Mingxing, KA GAI·Suoyintu, FU Wenying, SI Si, YU Tianyu, YANG Jundong, ZHANG Jian, LIANG Yuxin, ZHAO Xinsheng, WEI Yongsheng. Progress of Metal Catalysts Doping with Boron, Phosphorus Elements for Hydrogen Evolution Reaction in Water Electrolysis. Materials Reports, 2023, 37(S1): 22080121-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080121  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/22080121
1 Yu F, Yu L, Mishra I K, et al. Materials Today Physics, 2018, 7, 121.
2 Hua W, Sun H H, Xu F, et al. Rare Metals, 2020, 39 (4), 335.
3 Jo S, Kwon J, Cho K Y, et al. Catalysis Today, 2021, 359, 35.
4 Lee H, Bak S, Cho Y, et al. NPG Asia Materials, 2018, 10 (5), 441.
5 Qiang C C, Zhang L, He H L, et al. Journal of Colloid and Interface Science, 2021, 604, 650.
6 Wu Z P, Lu X F, Zang S Q, et al. Advanced Functional Materials, 2020, 30 (15), 1910274.
7 Fu W Y, Lin Y X, Wang M S, et al. Rare Metals, 2022, 41 (9), 3077.
8 Mu W N, Wang L X, Wang Q, et al. Materials Reports, 2021, 35 (z2), 56.
9 Gui L Q, Huang Z L, Li G, et al. Electrochim Acta, 2019, 293, 240.
10 Guo L, Luo F, Guo F, et al. Chemical Communications, 2019, 55 (53), 7623.
11 Jokar A, Toghraei A, Maleki M, et al. Electrochimica Acta, 2021, 389, 138691.
12 Zou X X, Zhang Y. Chemical Society Reviews, 2015, 44 (15), 5148.
13 Zou X, Wang L, Ai X, et al. Chemical Communications, 2020, 56 (20), 3061.
14 Zhou F, Zhou Y, Liu G G, et al. Rare Metals, 2021, 40 (12), 3375.
15 Zhong H H, Campos-Roldan C A, Zhao Y, et al. Catalysts, 2018, 8 (11), 559.
16 Zhao Q, Yang J, Liu M, et al. ACS Catalysis, 2018, 8 (6), 5621.
17 Zhao G, Wang B, Yan Q, et al. Journal of Alloys and Compounds, 2022, 902, 163738.
18 Bai Y, Zhang G X, Zheng S S, et al. Science China-Materials, 2021, 64 (1), 137.
19 Huang W, Peng C, Tang J, et al. Journal of Energy Chemistry, 2022, 65, 78.
20 Wang F, Zhang K, Zha Q, et al. Journal of Alloys and Compounds, 2022, 899, 163346.
21 Hou C, Wang B, Murugadoss V, et al. Engineered Science, 2020, 11 (5), 19.
22 Irshad A, Munichandraiah N. ACS Applied Materials & Interfaces, 2015, 7 (29), 15765.
23 Cen J, Jiang E, Zhu Y, et al. Renewable Energy, 2021, 177, 1346.
24 Zhou W, Wu M M, Li G R. Chinese Journal of Catalysis, 2020, 41 (4), 691.
25 Li Y, Zhang H, Jiang M, et al. Nano Research, 2016, 9 (8), 2251.
26 Liu X, He G, Liu H, et al. Journal of Alloys and Compounds, 2022, 893, 162208.
27 Liu Y T, Zhang J, Li X X. International Journal of Electrochemical Science, 2019, 14, 6123.
28 Chen L, Song Y, Liu Y, et al. Journal of Energy Chemistry, 2020, 50, 395.
29 Niu S, Kong X, Li S, et al. Applied Catalysis B: Environmental, 2021, 297, 120442.
30 Yang M, Liu J, Xu H, et al. ChemPhysMater, 2022, 1(3), 155.
31 Yuan S, Xia M, Liu Z, et al. Chemical Engineering Journal, 2022, 430, 132697.
32 Ji X, Liu B, Ren X, et al. Acs Sustainable Chemistry & Engineering, 2018, 6 (4), 4499.
33 Wang J, Guan Y, Zhang Q, et al. Applied Surface Science, 2022, 582, 152481.
34 Karuppasamy L, Gurusamy L, Anandan S, et al. Materials Today Che-mistry, 2022, 24, 100799.
35 Huang C, Yu L, Zhang W, et al. Applied Catalysis B: Environmental, 2020, 276, 119137.
36 Zhang J, Wang T, Liu P, et al. Nature Communications, 2017, 8, 15437.
37 Zhao D, Sun K, Cheong W C, et al. Angew Chem Int Ed Engl, 2020, 59 (23), 8982.
38 Yan P P, Su W, Wei X F, et al. Materials Reports, 2021, 35 (14), 14007.
39 Cui S F, Li M, Bo X J. International Journal of Hydrogen Energy, 2020, 45 (41), 21221.
40 Wan L, Shi C W, Yu Z B, et al. Journal of Fuel Chemistry and Techno-logy, 2021, 49 (9), 1362.
41 Wu J D, Wang D P, Wan S, et al. Small, 2020, 16 (15), 9.
42 Min K, Hwang M, Shim S E, et al. Chemical Engineering Journal, 2021, 424, 130400.
43 Li L, Lu Y, Liu X, et al. Journal of Alloys and Compounds, 2022, 895, 162549.
44 Li Z P, Shang J P, Su C N, et al. Journal of Fuel Chemistry and Technology, 2018, 46 (4), 473.
45 Mu Z, Guo T, Fei H, et al. Applied Surface Science, 2021, 551, 149321.
46 Saad A, Gao Y, Owusu K A, et al. Small, 2021, 18 (6), 2104303.
47 Hossain M D, Liu Z, Zhuang M, et al. Advanced Energy Materials, 2019, 9 (10), 1803689.
48 Lu Q, Hutchings G S, Yu W, et al. Nature Communications, 2015, 6 (1), 1.
49 Hu Y, Xiong T, Balogun M S J T, et al. Materials Today Physics, 2020, 15, 100267.
50 Masa J, Andronescu C, Antoni H, et al. ChemElectroChem, 2019, 6 (1), 235.
51 Masa J, Weide P, Peeters D, et al. Advanced Energy Materials, 2016, 6 (6).
52 Gupta S, Patel N, Fernandes R, et al. Electrochimica Acta, 2017, 232, 64.
53 Cao G, Xu N, Chen Z, et al. Chemistry Select, 2017, 2 (21), 6187.
54 Chen Y, Yu G, Chen W, et al. Journal of the American Chemical Society, 2017, 139 (36), 12370.
55 Park H, Zhang Y, Scheifers J P, et al. Journal of the American Chemical Society, 2017, 139 (37), 12915.
56 Jothi P R, Zhang Y, Yubuta K, et al. ACS Applied Energy Materials, 2018, 2 (1), 176.
57 Gao D, Xia B, Zhu C, et al. Journal of Materials Chemistry and Physics, 2018, 6 (2), 510.
58 Lin Q, Shang C, Chen Z, et al. International Journal of Hydrogen Energy, 2020, 45 (55), 30659.
59 Gao X, Zhang H, Li Q, et al. Angewandte Chemie-International Edition, 2016, 55 (21), 6290.
60 Jia Y, Zhang L, Gao G, et al. Advanced Materials, 2017, 29 (17), 1700017.
61 Jin Y, Wang H, Li J, et al. Advanced Materials, 2016, 28 (19), 3785.
62 Sivanantham A, Ganesan P, Shanmugam S. Advanced Functional Materials, 2016, 26 (26), 4661.
63 Zhang J, Wang T, Pohl D, et al. Angewandte Chemie-International Edition, 2016, 55 (23), 6702.
64 Tang C, Cheng N, Pu Z, et al. Angewandte Chemie-International Edition, 2015, 54 (32), 9351.
65 Ledendecker M, Krick Calderon S, Papp C, et al. Angew Chem Int Ed Engl, 2015, 54 (42), 12361.
66 Wang J, Yang W, Liu J. Journal of Materials Chemistry A, 2016, 4 (13), 4686.
67 Wang M S, Fu W Y, Du L, et al. Applied Surface Science, 2020, 515, 7.
68 Wang X, Ma W, Xu Z, et al. Nano Energy, 2018, 48, 500.
69 Zhang X, Yu X, Zhang L, et al. Advanced Functional Materials, 2018, 28 (16), 1706523.
70 Yu L, Mishra I K, Xie Y, et al. Nano Energy, 2018, 53, 492.
71 Huang X K, Xu X P, Luan X X, et al. Nano Energy, 2020, 68, 104332.
72 Li H, Wu Y, Wan Y, et al. Catalysis Today, 2004, 93-5, 493.
73 Wu Z X, Nie D Z, Song M, et al. Nanoscale, 2019, 11 (15), 7506.
74 Dong D Q, Xu X L, Ma C L, et al. Hydrogen Energy, 2020, 45 (7), 4545.
75 Ma X Y, Zhang S H, He Y, et al. Journal of Electroanalytical Chemistry, 2021, 886, 115107.
76 Wei Y S, Zou P C, Yue Y C, et al. JACS Applied Materials & Interfaces, 2021, 13 (17), 20024.
77 Hu G, Fu W, Lin Y, et al. ACS Applied Energy Materials, 2022, 5 (4), 4259.
78 Liu M Y, He Q, Huang S W, et al. ACS Applied Materials Interfaces, 2021, 13 (8), 9932.
79 Wu Z X, Nie D Z, Song M, et al. Nanoscale, 2019, 11 (15), 7506.
80 Tang W, Liu X, Li Y, et al. Nano Research, 2020, 13 (2), 447.
81 Ali A, Liu Y, Mo R, et al. Hydrogen Energy, 2020, 45 (46), 24312.
82 Bao X, Li Y, Wang J, et al. ChemCatChem, 2020, 12 (24), 6259.
[1] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[2] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[3] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[4] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[5] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[6] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[7] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[8] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[9] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[10] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[11] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[12] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed