Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 22070253-5    https://doi.org/10.11896/cldb.22070253
  无机非金属及其复合材料 |
铋系超导薄膜面内取向的X射线测量方法
贺彤*, 杨一俏, 孙伟
东北大学分析测试中心,沈阳 110819
In-plane Orientation Determination of Bismuth-based Superconducting Films by X-ray Diffraction
HE Tong*, YANG Yiqiao, SUN Wei
Analytical and Testing Center, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3526KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 薄膜材料作为一种新型功能材料被广泛应用于各个重要领域。薄膜一些独特的性能强烈地依赖于薄膜的微结构。近年来,薄膜的微结构表征方法逐渐成为研究热点。只有准确地表征出薄膜的微结构特征,才能进一步通过调整工艺流程实现对薄膜组织结构的控制,进而提高其应用性能。薄膜的择优取向是薄膜微结构的重要特征,它影响着功能薄膜材料的机械和电磁特性。可以通过对薄膜择优取向的控制来提高薄膜的稳定性和功能性。薄膜衬底的取向以及薄膜与其衬底之间的取向关系都会导致薄膜晶粒的择优生长或是织构的变化,因此,薄膜择优取向的测量应该包括测量薄膜空间取向以及其与衬底之间的取向关系两部分内容。
   目前,对于薄膜材料择优取向的测量方法主要有金相蚀坑术(着色)、X射线衍射技术、电子衍射、中子衍射和电子背散射花样(Electron back scattering diffraction,EBSD)技术及TEM衍射斑法等方法。在众多测量方法中,各种衍射技术具有良好的宏观统计性,因此它们具有测量结果准确的优点。同时在各种衍射方法中,X射线衍射是最为实用和方便的一种衍射方法,因此,X射线衍射方法成为薄膜材料择优取向表征的主要手段。对具有单一取向的薄膜材料而言,可以避开使用测试方法和分析过程都较为复杂的极图表征方法,巧妙应用X射线Φ扫描方法,利用晶体学的理论,讨论不同晶面之间的位向关系,对薄膜样品的空间取向以及衬底与薄膜之间的取向关系进行准确的表征,这将是一种实用性很强的表征方法,值得广泛推广。本工作以单晶MgO衬底上生长的铋系超导薄膜材料为例,结合所研究材料的晶体结构特征,巧妙应用X射线Φ扫描方法对Bi2201薄膜的空间取向特别是面内取向进行了表征,明确了强取向薄膜Bi2201在单晶MgO衬底上并不是简单的“Cube on Cube”外延生长,Bi2201薄膜在c轴外延生长的基础上,在a-b面内绕MgO(001)晶向旋转45°的关系外延生长,即薄膜选择(001)[100] Bi2201∥(001)[110]MgO面内取向外延生长;并详细说明了测量方法的原理及具体实验步骤。这一方法为单晶或是强取向薄膜材料面内择优取向的测量和分析单晶或强取向薄膜材料与单晶衬底之间的错配关系提供了新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺彤
杨一俏
孙伟
关键词:  铋系超导薄膜  择优取向  Φ扫描法  X射线    
Abstract: The X-ray Φ scanning method was used to characterize the spatial orientation of Bi2201 film, especially the in-plane orientation, by taking bismuth-based superconducting thin films growing on a single-crystal MgO substrate as an example, combined with the crystal structure characteristics of the studied materials. The single-crystal film Bi2201 did not exhibit simple ‘cube-on-cube'-style growth on the single-crystal MgO substrate. Based on c-axis epitaxial growth, Bi2201 film was epitaxially grown by rotating 45° around the MgO (001) crystal direction in the a-b plane; that is, the film was selectively (001) [100] Bi2201∥(001) [110] MgO in in-plane-oriented epitaxial growth. The work describes the principles and specific experimental steps of the measurement method in detail. The results indicate that the method provides a new way to measure and analyze the in-plane preferred orientation of single-crystal or strongly preferred orientation film materials and the mismatch relationship between single-crystal or strongly preferred orientation film materials and a single-crystal substrate.
Key words:  bismuth based superconducting film    preferred orientation    Φ scanning    X-ray
发布日期:  2023-09-06
ZTFLH:  TB31  
基金资助: 国家自然科学基金(52174308)
引用本文:    
贺彤, 杨一俏, 孙伟. 铋系超导薄膜面内取向的X射线测量方法[J]. 材料导报, 2023, 37(S1): 22070253-5.
HE Tong, YANG Yiqiao, SUN Wei. In-plane Orientation Determination of Bismuth-based Superconducting Films by X-ray Diffraction. Materials Reports, 2023, 37(S1): 22070253-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070253  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/22070253
1 Shi Y, Liu H J, Liu F, et al. Physica C: Superconductivity and its Applications, 2018, 550, 10.
2 Du L, Lu D L, Li J, et al. ACS Applied Materials Interfaces, 2019, 11, 35863.
3 Wang N, Dai Y X, Wang T L, et al. Journal of International Union of Crystallography, 2020, 7, 49.
4 Nam G D, Sung H J, Go B S, et al. IEEE Transactions on Applied Superconductivity, 2018, 28, 1.
5 Sugino M, Mizuno K, Tanaka M, et al. Physica C: Superconductivity and Its Applications, 2018, 544, 13.
6 Soler L, Jareno J, Banchewski J, et al. Nature Communications, 2020, 11, 1.
7 Konig. C, Fahy S, Greer J C. Physical Review Materials, 2019, 3, 065002-1.
8 Chen C, Teng H K, Yu C H, et al. Optics Communications, 2007, 273, 74.
9 Yuan W B, Zhong M. Journal of Synthetic Crystals, 2022, 51(4), 637 (in Chinese).
袁文宾, 钟敏. 人工晶体学. 2022, 51(4), 637.
10 Li J P, Zhang Y, Wang H C, et al. International Journal of Modern Physics B, 2018, 15, 1850191-1.
11 Zhu K, Wu L, Gong X X, et al. Physical Review B, 2016, 94, 121401-1.
12 Wang X X, Yang X D, Shen N F, et al. Applied Surface Science, 2019, 481, 1449.
13 He T, Sun W, Jin Y, et al. Physical Testing and Chemical Analysis Part A: Physical Testing, 2009, 45(6), 345 (in Chinese).
贺彤, 孙伟, 金禹, 等. 理化检验(物理分册). 2009, 45(6), 345.
14 Yu Z W, Hei Z K, Ma Y Q, et al. Journal of Instrumental Analysis, 1996, 15(5), 35 (in Chinese).
于志伟, 黑祖昆, 马永庆, 等. 分析测试学报, 1996, 15(5), 35.
15 Li J B, Yang L, Zhou Y C. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3), 56 (in Chinese).
李俊宝, 杨丽, 周益春. 湘潭大学学报(自然科学版), 2020, 42(3), 56.
16 Wan H, Bai S S, Gao Y, et al. Journal of Instrumental Analysis, 2009, 28(3), 333 (in Chinese).
万贺, 白莎莎, 高瑛, 等. 分析测试学报, 2009, 28(3), 333.
17 Liang D C. Fundamentals of X-ray crystallography, Science Press, China, 2006, pp.107 (in Chinese).
梁栋材. X射线晶体学基础, 科学出版社, 2006, pp.107.
18 Cong Q Z. Polycrystalline two-dimensional X-ray diffraction, Science Press, China, 1997, pp.30 (in Chinese).
丛秋滋. 多晶二维X-射线衍射, 科学出版社, 1997, pp.30.
19 Xiong J, Tao B W, Xie Y M, et al. Chinese Journal of Low Temperature Physics, 2005, 27(3), 234(in Chinese).
熊杰, 陶伯万, 谢廷明, 等. 低温物理学报, 2005, 27(3), 234.
20 Yuan D C, Guo S, Hao J J, et al. Material Reports, 2019, 33(1), 152(in Chinese).
袁大超, 郭双, 郝建军, 等. 材料导报, 2019, 33(1), 152.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[3] 陈秋雨, 张城皓, 曹可, 陆永俊, 王连才, 张秀芹, 马慧玲, 翟茂林. 高分子基辐射防护材料研究进展[J]. 材料导报, 2022, 36(Z1): 21080080-4.
[4] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[5] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[6] 谢锐, 吕铮, 徐长伟, 刘波, 刘春明. 钛、锆元素对ODS钢中氧化物析出相的分布特征及材料力学性能的影响[J]. 材料导报, 2021, 35(16): 16104-16110.
[7] 陈利尧, 赵晓明. 柔性X射线防护材料的研究现状及展望[J]. 材料导报, 2021, 35(15): 15088-15093.
[8] 卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
[9] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[10] 谢锐, 吕铮, 徐长伟, 刘春明. 钛元素对9Cr氧化物弥散强化钢微观组织和拉伸性能的影响[J]. 材料导报, 2020, 34(22): 22111-22117.
[11] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[12] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[13] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[14] 王博元, 姚武. 环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究[J]. CLDB, 2017, 31(5): 123-127.
[15] 刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed