摘要 薄膜材料作为一种新型功能材料被广泛应用于各个重要领域。薄膜一些独特的性能强烈地依赖于薄膜的微结构。近年来,薄膜的微结构表征方法逐渐成为研究热点。只有准确地表征出薄膜的微结构特征,才能进一步通过调整工艺流程实现对薄膜组织结构的控制,进而提高其应用性能。薄膜的择优取向是薄膜微结构的重要特征,它影响着功能薄膜材料的机械和电磁特性。可以通过对薄膜择优取向的控制来提高薄膜的稳定性和功能性。薄膜衬底的取向以及薄膜与其衬底之间的取向关系都会导致薄膜晶粒的择优生长或是织构的变化,因此,薄膜择优取向的测量应该包括测量薄膜空间取向以及其与衬底之间的取向关系两部分内容。 目前,对于薄膜材料择优取向的测量方法主要有金相蚀坑术(着色)、X射线衍射技术、电子衍射、中子衍射和电子背散射花样(Electron back scattering diffraction,EBSD)技术及TEM衍射斑法等方法。在众多测量方法中,各种衍射技术具有良好的宏观统计性,因此它们具有测量结果准确的优点。同时在各种衍射方法中,X射线衍射是最为实用和方便的一种衍射方法,因此,X射线衍射方法成为薄膜材料择优取向表征的主要手段。对具有单一取向的薄膜材料而言,可以避开使用测试方法和分析过程都较为复杂的极图表征方法,巧妙应用X射线Φ扫描方法,利用晶体学的理论,讨论不同晶面之间的位向关系,对薄膜样品的空间取向以及衬底与薄膜之间的取向关系进行准确的表征,这将是一种实用性很强的表征方法,值得广泛推广。本工作以单晶MgO衬底上生长的铋系超导薄膜材料为例,结合所研究材料的晶体结构特征,巧妙应用X射线Φ扫描方法对Bi2201薄膜的空间取向特别是面内取向进行了表征,明确了强取向薄膜Bi2201在单晶MgO衬底上并不是简单的“Cube on Cube”外延生长,Bi2201薄膜在c轴外延生长的基础上,在a-b面内绕MgO(001)晶向旋转45°的关系外延生长,即薄膜选择(001)[100] Bi2201∥(001)[110]MgO面内取向外延生长;并详细说明了测量方法的原理及具体实验步骤。这一方法为单晶或是强取向薄膜材料面内择优取向的测量和分析单晶或强取向薄膜材料与单晶衬底之间的错配关系提供了新途径。
Abstract: The X-ray Φ scanning method was used to characterize the spatial orientation of Bi2201 film, especially the in-plane orientation, by taking bismuth-based superconducting thin films growing on a single-crystal MgO substrate as an example, combined with the crystal structure characteristics of the studied materials. The single-crystal film Bi2201 did not exhibit simple ‘cube-on-cube'-style growth on the single-crystal MgO substrate. Based on c-axis epitaxial growth, Bi2201 film was epitaxially grown by rotating 45° around the MgO (001) crystal direction in the a-b plane; that is, the film was selectively (001) [100] Bi2201∥(001) [110] MgO in in-plane-oriented epitaxial growth. The work describes the principles and specific experimental steps of the measurement method in detail. The results indicate that the method provides a new way to measure and analyze the in-plane preferred orientation of single-crystal or strongly preferred orientation film materials and the mismatch relationship between single-crystal or strongly preferred orientation film materials and a single-crystal substrate.
贺彤, 杨一俏, 孙伟. 铋系超导薄膜面内取向的X射线测量方法[J]. 材料导报, 2023, 37(S1): 22070253-5.
HE Tong, YANG Yiqiao, SUN Wei. In-plane Orientation Determination of Bismuth-based Superconducting Films by X-ray Diffraction. Materials Reports, 2023, 37(S1): 22070253-5.
1 Shi Y, Liu H J, Liu F, et al. Physica C: Superconductivity and its Applications, 2018, 550, 10. 2 Du L, Lu D L, Li J, et al. ACS Applied Materials Interfaces, 2019, 11, 35863. 3 Wang N, Dai Y X, Wang T L, et al. Journal of International Union of Crystallography, 2020, 7, 49. 4 Nam G D, Sung H J, Go B S, et al. IEEE Transactions on Applied Superconductivity, 2018, 28, 1. 5 Sugino M, Mizuno K, Tanaka M, et al. Physica C: Superconductivity and Its Applications, 2018, 544, 13. 6 Soler L, Jareno J, Banchewski J, et al. Nature Communications, 2020, 11, 1. 7 Konig. C, Fahy S, Greer J C. Physical Review Materials, 2019, 3, 065002-1. 8 Chen C, Teng H K, Yu C H, et al. Optics Communications, 2007, 273, 74. 9 Yuan W B, Zhong M. Journal of Synthetic Crystals, 2022, 51(4), 637 (in Chinese). 袁文宾, 钟敏. 人工晶体学. 2022, 51(4), 637. 10 Li J P, Zhang Y, Wang H C, et al. International Journal of Modern Physics B, 2018, 15, 1850191-1. 11 Zhu K, Wu L, Gong X X, et al. Physical Review B, 2016, 94, 121401-1. 12 Wang X X, Yang X D, Shen N F, et al. Applied Surface Science, 2019, 481, 1449. 13 He T, Sun W, Jin Y, et al. Physical Testing and Chemical Analysis Part A: Physical Testing, 2009, 45(6), 345 (in Chinese). 贺彤, 孙伟, 金禹, 等. 理化检验(物理分册). 2009, 45(6), 345. 14 Yu Z W, Hei Z K, Ma Y Q, et al. Journal of Instrumental Analysis, 1996, 15(5), 35 (in Chinese). 于志伟, 黑祖昆, 马永庆, 等. 分析测试学报, 1996, 15(5), 35. 15 Li J B, Yang L, Zhou Y C. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3), 56 (in Chinese). 李俊宝, 杨丽, 周益春. 湘潭大学学报(自然科学版), 2020, 42(3), 56. 16 Wan H, Bai S S, Gao Y, et al. Journal of Instrumental Analysis, 2009, 28(3), 333 (in Chinese). 万贺, 白莎莎, 高瑛, 等. 分析测试学报, 2009, 28(3), 333. 17 Liang D C. Fundamentals of X-ray crystallography, Science Press, China, 2006, pp.107 (in Chinese). 梁栋材. X射线晶体学基础, 科学出版社, 2006, pp.107. 18 Cong Q Z. Polycrystalline two-dimensional X-ray diffraction, Science Press, China, 1997, pp.30 (in Chinese). 丛秋滋. 多晶二维X-射线衍射, 科学出版社, 1997, pp.30. 19 Xiong J, Tao B W, Xie Y M, et al. Chinese Journal of Low Temperature Physics, 2005, 27(3), 234(in Chinese). 熊杰, 陶伯万, 谢廷明, 等. 低温物理学报, 2005, 27(3), 234. 20 Yuan D C, Guo S, Hao J J, et al. Material Reports, 2019, 33(1), 152(in Chinese). 袁大超, 郭双, 郝建军, 等. 材料导报, 2019, 33(1), 152.