Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16104-16110    https://doi.org/10.11896/cldb.20060155
  金属与金属基复合材料 |
钛、锆元素对ODS钢中氧化物析出相的分布特征及材料力学性能的影响
谢锐1, 吕铮2, 徐长伟1, 刘波2, 刘春明2
1 沈阳建筑大学材料科学与工程学院,沈阳 110168;
2 东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室,沈阳 110819
Effects of Ti,Zr Elements on Oxides Precipitates Distribution Characteristics and Mechanical Properties of ODS Steels
XIE Rui1, LYU Zheng2, XU Changwei1, LIU Bo2, LIU Chunming2
1 School of Material Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 5699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化物弥散强化(Oxides dispersion strengthened,ODS)钢合金粉为研究对象,利用合金粉的真空等温热处理来模拟ODS钢的烧结成型过程。增大ODS钢中合金元素的含量,以此研究合金元素对氧化物析出相分布特征、种类及合金粉力学性能的影响。利用XRD、XAFS、SAXS等技术手段检测球磨及真空等温热处理不同时间后合金粉中氧化物析出相的分布特征、种类变化情况,同时测量各合金粉的硬度。XRD实验结果表明,当合金中添加了钛元素和锆元素后,除铁素体衍射峰外,热处理过程中还形成了Cr2O3相、Y2Ti2O7相及Y4Zr3O12相。而在不含钛元素和锆元素的合金粉中只检测到Cr2O3相和铁素体的存在。XAFS实验结果表明,添加了钛元素和锆元素后,合金粉的XAFS曲线发生改变,与纯钇元素及纯氧化钇样品的曲线不同,含钛元素和锆元素的合金粉经真空等温热处理0.5 h后,其中氧化物析出相的分布密度最高为2.73×1022/m3;氧化物析出相达到分布峰值的时间早于不含钛元素和锆元素的样品,说明钛元素和锆元素会促进氧化物相的形成。同时,含钛元素和锆元素的合金粉的硬度也高于不含钛元素和锆元素的合金粉样品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢锐
吕铮
徐长伟
刘波
刘春明
关键词:  氧化物弥散强化钢  钛元素  锆元素  X射线吸收精细结构  小角度X射线散射  力学性能    
Abstract: In this paper, the alloy powders of oxide dispersion strengthened (ODS) steel were studied. The vacuum isothermal heat treatment was applied to simulate the sintering process of ODS steel. The contents of alloy elements were expended to study the distribution characteristics, types of oxide precipitates and mechanical properties. XRD, XAFS, SAXS and other technical means were used to detect the changes of oxide precipitates distribution characteristics and kinds, in the alloy powders after ball milling and vacuum isothermal heat treatment, the hardness of alloy powders were measured at the same time. The XRD results show that when titanium and zirconium are added to the alloy, Cr2O3, Y2Ti2O7 and Y4Zr3O12 phases are formed in alloy powders during heat treatment process besides ferrite. However, only Cr2O3 phase and ferrite were detected in the alloy powder without titanium and zirconium. The XAFS experimental results show that the XAFS curve of alloy powder changes when titanium and zirconium are added, which is different from pure yttrium and pure yttria. The SAXS results show that the distribution density of oxide precipitates reaches to maximum value of 2.73×1022/m3 after 0.5 h vacuum isothermally heat treatment. The maximum value of oxide precipitates distribution density appears earlier than the alloy powder sample without titanium and zirconium, which indicates that titanium and zirco-nium can promote the formation of oxide precipitates. At the same time, the hardness of alloy powders containing titanium and zirconium are higher than that of alloy powder without titanium and zirconium.
Key words:  oxide dispersion strengthened steel    Ti element    Zr element    X-ray absorption fine structure    small angle X-ray scattering    mechanical property
                    发布日期:  2021-09-07
ZTFLH:  TB31  
基金资助: 辽宁省兴辽英才计划(XLYC1902103);国家自然科学基金青年基金(51601031)
通讯作者:  xierui198479@126.com   
作者简介:  谢锐,沈阳建筑大学讲师。2007年于沈阳建筑大学获得无机非金属材料工程学士学位,2010年9月至2015年7于东北大学获得材料学博士学位。博士毕业后继续在东北大学冶金工程博士后流动站工作。工作期限为2015年10月至2018年3月。2018年3月博士后出站到沈阳建筑大学任教。至今已公开发表学术论文超过15篇,获得国家专利授权两项。他的研究领域主要围绕国家重点发展的先进金属材料、核反应堆用金属结构材料。同时,他的研究方向还获得了国家自然科学基金青年科学家基金项目、国家重大研发专项子课题、辽宁省自然科学基金等项目的支持。
引用本文:    
谢锐, 吕铮, 徐长伟, 刘波, 刘春明. 钛、锆元素对ODS钢中氧化物析出相的分布特征及材料力学性能的影响[J]. 材料导报, 2021, 35(16): 16104-16110.
XIE Rui, LYU Zheng, XU Changwei, LIU Bo, LIU Chunming. Effects of Ti,Zr Elements on Oxides Precipitates Distribution Characteristics and Mechanical Properties of ODS Steels. Materials Reports, 2021, 35(16): 16104-16110.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060155  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16104
1 Locatelli G, Mancini M, Todeschini N. Energy Policy, 2013, 61, 1503.
2 Azevedo C R F. Engineering Failure Analysis, 2011, 18(8), 1943.
3 Odette G R, Alinger M J, Wirth B D. Annual Review of Materials Research, 2008, 38, 471.
4 Lu C Y, Lu Z, Xie R, et al. Materials Characterization, 2017, 134, 35.
5 Miller M K, Russell K F, Hoelzer D T. Journal of Nuclear Materials, 2006, 351, 261.
6 Kumada T, Oba Y, Motokawa R, et al. Journal of Nuclear Materials, 2020, 528, 151890.
7 Li Z Y, Chen L J, Zhang H Y, et al. Materials Research Express, 2019, 6, 126515.
8 Fu J, Brouwer J C, Richardson I M, et al. Materials and Design, 2019, 177, 107849.
9 Aydogan E, Almirall N, Odette G R, et al. Journal of Nuclear Mate-rials, 2017, 486, 86.
10 Ricci E, Giuranno D, Canu G, et al. Materials and Corrosion, 2018, 69, 1584.
11 Gao W H, Guo X L, Shen Z, et al. Journal of Nuclear Materials, 2017, 486, 1.
12 Kumar D, Prakash U, Dabhade V V, et al. Materials Today: Procee-dings, 2018, 5, 3909.
13 de Castro V, Leguey T, Monge M A, et al. Journal of Nuclear Materials, 2003, 322, 228.
14 Roldán M, Fernández P, Rams J, et al. Nuclear Materials and Energy, 2020, 22, 100717.
15 Ukai S, Harada M, Okada H, et al. Journal of Nuclear Materials, 1993, 204, 65.
16 Xu S H, Zhou Z J, Long F, et al. Materials Science & Engineering A, 2019, 739, 45.
17 Zhou X S, Ma Z Q, Yu L M, et al. Journal of Materials Science, 2019, 54, 7893.
18 Kimura A, Kasada R, Iwata N, et al. Journal of Nuclear Materials, 2011, 417, 176.
19 Guo X L, Chen K, Gao W H, et al. Corrosion Science, 2018, 138, 297.
20 Ren J, Yu L M, Liu Y C, et al. Applied Surface Science, 2019, 480, 969.
21 Mohan S, Kaur G, Panigrahi B K, et al. Journal of Alloys and Compounds,2018, 767, 122.
22 Wu S J, Li J, Li W H, et al. Journal of Alloys and Compounds, 2020, 814, 152282.
23 麦振洪. 同步辐射光源及其应用(上册), 科学出版社, 北京, 2013.
24 Beaucage G. Journal of Applied Crystallography, 1996, 29, 134.
25 Ilavsky J, Jemian P R. Journal of Applied Crystallography, 2009, 42, 347.
26 Koningsberger D C, Mojet B L, Dorssen G E, et al. Topics in Catalysis, 2000, 10(3-4), 143.
27 Frédéric De G, Alexis D. Comptes Rendus Physique, 2012, 13(3), 246.
28 Degueldre C, Conradson S, Hoffelner M. Comput. Materials Science, 2005, 33, 3.
29 He T P, Liu A, Möslang R, et al. Materials Chemistry and Physics, 2012, 136, 2.
30 Dholakia M, Chandra S, Jaya S M. Journal of Applied Physics, 2019, 125(2), 025104.
31 Alinger M J, Odette G R, Hoelzer D T. Acta Materialia, 2009, 57, 392.
32 Toualbi L, Ratti M, André G, et al. Journal of Nuclear Materials, 2011, 417(1-3), 225.
33 Schneibel J H, Heilmaier M, Blum W, et al. Acta Materialia, 2011, 59(3), 1300.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed