Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15088-15093    https://doi.org/10.11896/cldb.20040096
  无机非金属及其复合材料 |
柔性X射线防护材料的研究现状及展望
陈利尧1, 赵晓明1,2,3
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津市先进纤维材料与储能技术重点实验室,天津 300387
3 天津市先进纺织复合材料重点实验室,天津 300387
Research Status and Development Trend of Flexible X-ray Resistant Materials
CHEN Liyao1, ZHAO Xiaoming1,2,3
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tianjin 300387, China
3 Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 5200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 X射线被广泛用于科研、工业和医学等领域。由于X射线对人体有害,使用X射线时需进行合理的防护,柔性X射线防护材料可开发防护围裙等装置。X射线防护材料通过光电效应、康普顿效应和电子对效应衰减X射线。铅的原子序数高、密度大、能屏蔽和衰减X射线,但具有毒性且质量大。传统含铅X射线防护材料有着寿命短、对特定能量的X射线防护性能低及透气性差等缺点。与含铅材料相比,使用高原子序数的W、Bi、Ta、Sn等材料开发的无铅柔性X射线防护纤维和织物具有无毒、屏蔽效率高、轻薄等优点,弥补了含铅材料的不足,是柔性X射线防护材料的发展趋势。本文综述了X射线防护材料的防护机理、评价指标及研究进展,重点从技术路线的角度归纳了无铅柔性X射线防护材料的研究现状,分析了使用纺丝法、涂层法存在的问题并展望了柔性X射线防护材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈利尧
赵晓明
关键词:  X射线  柔性防护材料  无铅材料  纤维  织物    
Abstract: X-ray are widely used across science, engineering and medicine. However, extended exposure can be harmful to humans, and therefore, it is necessary to use appropriate protection when using X-rays. Flexible X-ray resistant materials are used in protective aprons and other devices. The X-ray resistant materials attenuate X-rays by the photoelectric effect, the Compton effect, and the electron pair effect. Lead has resis-tant effect on X-rays due to its high atomic number (Z) and density, however, it is a toxic and heavy metal. Traditional flexible X-ray resistant materials contain lead, often have a short service life, a weak absorption zone, and poor air permeability. Other high-Z elements, such as W, Bi, Ta and Sn, have been suggested as raw materials for developing new flexible X-ray resistant fibers and fabrics without the use of lead. They are advantageous over lead-based materials because of their non-toxicity, high shielding efficiency, lightness and thinness, and thus, they are beco-ming popular for manufacturing flexible X-ray resistant materials. This article summarizes the protection mechanism and evaluation indicators and research progress of X-ray resistant materials. Herein, recent research progress in the application of lead-free flexible X-ray resistant materials is summarized from the technical perspective, along with the problems of related spinning and coated methods. The potential in the development of lead-free X-ray resistant materials is evaluated.
Key words:  X-ray    flexible resistant materials    lead-free materials    fibers    fabrics
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TL75+2.3  
基金资助: 2018年天津市自然科学基金重点项目(18JCZDJC99900);2018年天津市自然科学基金面上项目(18JCYBJC86600);2017年度天津市教委科研计划项目(2017KJ070)
作者简介:  陈利尧,天津工业大学纺织科学与工程学院硕士研究生,在赵晓明教授指导下进行研究。从事柔性X射线防护材料和涂层织物防护性能研究。
赵晓明,天津工业大学纺织学院教授、博士研究生导师。中国产业用纺织品行业协会特种纺织品分会秘书长,主要从事柔性防护材料性能方面的研究,近五年在国内外重要期刊发表文章100多篇,申报发明专利20余项。
引用本文:    
陈利尧, 赵晓明. 柔性X射线防护材料的研究现状及展望[J]. 材料导报, 2021, 35(15): 15088-15093.
CHEN Liyao, ZHAO Xiaoming. Research Status and Development Trend of Flexible X-ray Resistant Materials. Materials Reports, 2021, 35(15): 15088-15093.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040096  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15088
1 Meissner J, Abs M, Cleland M R, et al. Radiation Physics and Chemistry,2000,57(3),647.
2 Giommi P, Padovani P. Monthly Notices of the Royal Astronomical Society,2015,450(3),2404.
3 Popmintchev T, Chen M, Popmintchev D, et al. Science,2012,336(6086),1287.
4 Ioka K, Hotokezaka K, Piran T. Astrophysical Journal,2016,833(1),110.
5 Zdziarski A A, Misra R, Gierliński M. Monthly Notices of the Royal Astronomical Society,2010,402(2),767.
6 Wang Q, Ji P. Chinese General Practice Nursing,2015,13(27),2699(in Chinese).
王琪,季萍.全科护理,2015,13(27),2699.
7 Allen H S. Nature,1931,127(3201),356.
8 Wood R W. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1896,41(251),382.
9 Duarte J, Cassin R, Huijts J, et al. Nature Photonics,2019,13(7),449.
10 Wei H, Huang J. Nature Communications,2019,10(1),1066.
11 Mole R H. British Journal of Cancer,1990,62(1),152.
12 Urban M, Nentvich O, Stehlikova V, et al. Acta Astronautica,2017,140,96.
13 Wu M Y, Zhu Y B, Zhou J Y, et al. Radiation Protection,2006(1),35(in Chinese).
吴明媛,朱一蓓,周菊英,等.辐射防护,2006(1),35.
14 Kim J H. The Korean Journal of Pain,2018,3(31),145.
15 Yu J, Liang L. China Personal Protective Equipment,2016(1),29(in Chinese).
于静,梁丽.中国个体防护装备,2016(1),29.
16 Horner K, Islam M, Flygare L, et al. Dentomaxillofacial Radiology,2009,38(4),187.
17 Feng H Y, Zhang J, Shi Y. Occupation and Health,2018,34(12),1702(in Chinese).
冯鸿义,张捷,石远.职业与健康,2018,34(12),1702.
18 Xiao H, Guo C Y, Gao L F, et al. Chinese Journal of Radiological Health,2018,27(3),240(in Chinese).
肖虹,郭常义,高林峰,等.中国辐射卫生,2018,27(3),240.
19 Shao Y H, Wang Y, Wang Y W. Journal of Environmental & Occupatio-nal Medicine,2015,32(12),1124(in Chinese).
邵迎辉,王瑜,王永卫,等.环境与职业医学,2015,32(12),1124.
20 Fränzel W, Gerlach R. Zeitschrift für Medizinische Physik,2009,19(1),5.
21 Serafini L, Bacci A, Bellandi A, et al. Nuclear Instruments and Methods in Physics Research Section A, Accelerators, Spectrometers, Detectors and Associated Equipment,2019,930,167.
22 Chaleil A, Flanchec V, Binet A, et al. Nuclear Instruments and Methods in Physics Research Section A, Accelerators, Spectrometers, Detectors and Associated Equipment,2016,840,113.
23 Nambiar S, Osei E K, Yeow J T. Journal of Applied Polymer Science,2013,127(6),4939.
24 Zhen Q, Qian X M, Zhang H. Shanghai Textile Science & Technology,2015,43(1),4(in Chinese).
甄琪,钱晓明,张恒.上海纺织科技,2015,43(1),4.
25 Jiang D F, Wang G H, Li T T, et al. Materials Reports B: Research Papers,2017,31(3),56(in Chinese).
蒋丹枫,王国辉,李婷婷,等.材料导报:研究篇,2017,31(3),56.
26 Singer G. Journal of the American Academy of Orthopaedic Surgeons,2005,13(1),69.
27 Bartal G, Sailer A M, Vano E. Techniques in Vascular and Interventional Radiology,2018,21(1),2.
28 Honigsberg H, Speroni K G, Fishback A, et al. AORN Journal,2017,106(6),534.
29 Ni M, Tang X, Chai H, et al. Nuclear Engineering & Technology,2016,48(6),1396.
30 Zuguchi M, Chida K, Taura M, et al. Radiation Protection Dosimetry,2008,131(4),531.
31 Shi M W, Zhou H H. China Textile Leader,2013(5),90(in Chinese).
施楣梧,周洪华.纺织导报,2013(5),90.
32 Mirzaei M, Zarrebini M, Shirani A, et al. Powder Technology,2019,345,15.
33 Jamil M, Hazlan M H, Ramli R M, et al. Radiation Physics and Chemistry,2019,156,272.
34 McCaffrey J P, Shen H, Downton B, et al. Medical Physics,2007,34(2),79.
35 Yaffe M J, Mawdsley G E, Lille M, et al. Health Physics,1991,60(5),661.
36 Lin J H, Chung J, Zeng Y, et al. Fibers & Polymers,2015,16(1),216.
37 Hashemi S A, Mousavi S M, Faghihi R, et al. Radiation Physics & Chemistry,2018,146,77.
38 Specht A J, Weisskopf M, Nie L H. Journal of Exposure Science & Environmental Epidemiology,2019,29(3),416.
39 Frith D, Yeung K, Thrush S, et al. The Lancet,2005,366(9503),2146.
40 Frankel D. The Lancet,1994,343(8900),787.
41 Lakhwani O P, Dalal V, Jindal M, et al. Journal of Clinical Orthopaedics and Trauma,2018,10(4),738.
42 Qi L, Duan J Y, Wang X C, et al. Journal of Textile Research,1995(2),23(in Chinese).
齐鲁,段谨源,王学晨,等.纺织学报,1995(2),23.
43 Shams A M, Mostafa A. Journal of Alloys & Compounds,2017,695,302.
44 Kumar A. Radiation Physics & Chemistry,2017,136,50.
45 Shamshad L, Rooh G, Limkitjaroenporn P, et al. Progress in Nuclear Energy,2017,97,53.
46 Hazlan M H, Jamil M, Ramli R M, et al. Applied Physics A,2018,124(7),497.
47 Noor N Z, Musa N F, Nik A, et al. Applied Physics A,2016,122(9),818.
48 Aral N, Ceazv C. Textile Research Journal,2016,86(8),803.
49 Sun K, Gu C Y, Liu Y J, et al. Polymer Materials Science & Enginee-ring,2016, 32(4),148(in Chinese).
孙宽,谷春燕,刘玉姣,等.高分子材料科学与工程,2016,32(4),148.
50 Gu C Y, Sun K, Zhang Y F, et al. Rare Metal Materials and Enginee-ring,2017,46(9),2633(in Chinese).
谷春燕,孙宽,张玉芳,等.稀有金属材料与工程,2017,46(9),2633.
51 Qu L, Tian M, Zhang X, et al. Journal of Industrial Textiles,2015,45(3),352.
52 Kim S C, Choi J R, Jeon B K. Scientific Reports,2016,6,27721.
53 Jiang X, Zhu X, Chang C, et al. International Journal of Biological Macromolecules,2019,139,793.
54 Ripin A, Mohamed F, Thye F C, et al. Radiation Physics and Chemistry,2018,144,63.
55 Sambhudevan S, Balakrishnan S, Saritha A, et al. Journal of Elastomers & Plastics,2017,49(6),527.
56 Mao Y, Zhi X, Hu S, et al. Journal of Composite Materials,2015,49(16),1989.
57 Gao S S, Wu L, Zhang Y, et al. Popular Science & Technology,2018,20(1),22(in Chinese).
高世双,吴炼,张燕,等.大众科技,2018,20(1),22.
58 Ou X M, Zhao S A, Li M S. China Medical Equipments,2008(6),4(in Chinese).
欧向明,赵士庵,李明生.中国医学装备,2008(6),4.
59 Liu Y J, Zhao X M, Tuo X. The Journal of the Textile Institute,2017,108(5),829.
60 Liu Y J, Liu Y C, Zhao X M. The Journal of the Textile Institute,2018,109(1),106.
61 Maghrabi H A, Arun V, Dep P. Textile Research Journal,2016,86(6),649.
62 Aral N, Nergis F B. Journal of Industrial Textiles,2017,47(2),252.
63 Khoerunnisa F, Futamura R, Mukai S, et al. Carbon,2019,145,209.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[3] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[4] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[5] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[6] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[7] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[8] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[9] 张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026.
[10] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[11] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[12] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[13] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[14] 栾玉, 任丹, 徐丹. 横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展[J]. 材料导报, 2021, 35(5): 5195-5198.
[15] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed