Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6078-6085    https://doi.org/10.11896/cldb.19100146
  无机非金属及其复合材料 |
煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究
吴金荣1,2, 崔善成2, 李飞2, 洪荣宝2
1 安徽理工大学,矿山地下工程教育部工程研究中心,淮南 232001
2 安徽理工大学土木建筑学院,淮南 232001
Study on Low Temperature Crack Resistance of Coal Gangue Powder/Polyester Fiber Asphalt Mixture
WU Jinrong1,2, CUI Shancheng2, LI Fei2, HONG Rongbao2
1 Engineering Research Center of Underground Mine Construction, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
2 School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 5565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究煤矸石粉、聚酯纤维和反射裂缝对沥青混合料低温抗裂性能的影响,通过三点弯曲加载试验,选用五种煤矸石粉替代率(0%(质量分数,下同)、25%、50%、75%、100%)和六种聚酯纤维掺量(0%、0.3%、0.35%、0.4%、0.45%、0.5%),对试件底部中心无预切口和预切口偏移中心0 mm、10 mm、20 mm(模拟反射裂缝)的沥青混合料半圆形试件的低温抗裂性能进行研究;采用扫描电镜对煤矸石粉、聚酯纤维对沥青混合料低温抗裂性能的改善机理进行微观分析。通过试验得出:对于无预切口的SCB试件,聚酯纤维的最佳掺量为0.4%,煤矸石粉的最佳替代率为50%;对于有预切口的SCB试件,聚酯纤维的最佳掺量取值范围为0.38%~0.42%;随着预切口偏移距离的增大,沥青混合料所能承受的极限荷载逐渐减小,试件更容易破坏。微观机理分析得出:煤矸石粉的掺入,使填料级配得到了进一步细化,更有利于提高沥青混合料的抗裂性能;同时,聚酯纤维在沥青混合料内部能够充分形成均匀相互搭接的网格结构,沥青混合料的低温抗裂性能也最好。因此,掺加煤矸石粉和聚酯纤维能够减小反射裂缝对沥青混合料低温抗裂性能的危害。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴金荣
崔善成
李飞
洪荣宝
关键词:  沥青混合料  煤矸石粉  聚酯纤维  预切口位置  SCB试验    
Abstract: In order to study the effect of coal gangue powder, polyester fiber and reflective crack on the low temperature crack resistance of asphalt mixture, the low temperature crack resistance of asphalt mixture was studied by three-point bending loading test. In the test, asphalt mixture specimens were processed into semi-circular disc with no pre-cut and pre-notch (simulated reflection cracks) offset center 0 mm, 10 mm, 20 mm on the bottom. Five replacement rates of coal gangue powder were selected as 0%, 25%, 50%, 75%, 100%, and six kinds of polyester fiber content were chosen as 0%, 0.3%, 0.35%, 0.4%, 0.45%, 0.5%. The improvement mechanism of coal gangue powder and polyester fiber on low tempe-rature crack resistance of asphalt mixture was analyzed by SEM. Through experiments, the optimum amount of polyester fiber is 0.4% for SCB specimens with no pre-cut, and the optimum replacement rate of coal gangue powder is 50%; for SCB specimens with pre-cut, the optimum do-sage of polyester fibers ranges from 0.38% to 0.42%. With the increase of the offset distance of the pre-cut, the ultimate load of the asphalt mixture gradually decreases, and the semi-circular disc is more likely to be destroyed. The microscopic mechanism analysis shows that the incorporation of coal gangue powder makes the filler grading further refined, which is more conducive to improving the crack resistance of the asphalt mixture. At the same time, the polyester fiber can fully form a grid that evenly overlaps each other in the asphalt mixture and asphalt mixture has the best low temperature crack resistance. Therefore, the addition of coal gangue powder and polyester fiber can reduce the damage of reflective cracks to the low temperature crack resistance of asphalt mixture.
Key words:  asphalt mixture    coal gangue powder    polyester fiber    pre-cut position    SCB test
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  U414  
基金资助: 安徽省高校自然科学重点研究项目(KJ2017A096)
通讯作者:  wujr2000@163.com   
作者简介:  吴金荣,安徽理工大学教授,硕士研究生导师,安徽省优秀教师。2001年参加工作至今,在国内外学术期刊上发表论文40余篇。主要从事沥青路面结构与材料的研究。主持或参与省部级科研项目多项,已培养硕士20余名。
崔善成,2018年9月就读于安徽理工大学的硕士研究生。主要从事路面和沥青混合料材料性能的研究。
引用本文:    
吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
WU Jinrong, CUI Shancheng, LI Fei, HONG Rongbao. Study on Low Temperature Crack Resistance of Coal Gangue Powder/Polyester Fiber Asphalt Mixture. Materials Reports, 2021, 35(6): 6078-6085.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100146  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6078
1 Hong R B. Study on low-temperature performance of coal gangue powder and polyester fiber asphalt mixture. Master's Thesis, Anhui University of Science and Technology, China,2019(in Chinese).
洪荣宝.煤矸石粉/聚酯纤维沥青混合料低温抗裂性能试验研究.硕士学位论文,安徽理工大学,2019.
2 Fu G Z, Cao D D, Zhao Y Q, et al. Journal of Acta Materiae Compositae Sinica,2019,36(4),1001(in Chinese).
付国志,曹丹丹,赵延庆,等.复合材料学报,2019,36(4),1001.
3 Li W, Cheng P F, Li G D. Journal of Northeast Forestry University,2009,37(6),54(in Chinese).
李伟,程培峰,李国栋.东北林业大学学报,2009,37(6),54.
4 Zhao M, Yin S R, Chen Q R. Journal of China University of Mining & Technology,2005,34(4),472(in Chinese).
赵鸣,尹守仁,陈清如.中国矿业大学学报,2005,34(4),472.
5 Yang X K, Xiong R, Fan T Q, et al. Materials Review B: Research Papers,2015,29(6),135(in Chinese).
杨晓凯,熊锐,范天奇,等.材料导报:研究篇,2015,29(6),135.
6 Xiong R, Yang X K, Yang F, et al. Journal of Wuhan University of Technology,2016,38(2),11(in Chinese).
熊锐,杨晓凯,杨发,等.武汉理工大学学报,2016,38(2),11.
7 Xiong R, Liu Z M, Yang X K, et al. Road Machinery & Construction Mechanization,2017,71(5),71(in Chinese).
熊锐,刘子铭,杨晓凯,等.设计与实验,2017,71(5),71.
8 Xiong R, Yang X K, Yang F, et al. Materials Review B: Research Papers,2017,31(1),121(in Chinese).
熊锐,杨晓凯,杨发.材料导报:研究篇,2017,31(1),121.
9 Cheng W J. Highway Engineering,2016,41(3),232(in Chinese).
程文静.公路工程,2016,41(3),232.
10 Zhang Yingxue, Lei Q, Luo R Z, et al. Journal of China & Foreign Highway,2016,36(3),278(in Chinese).
张映雪,雷强,罗润洲,等.中外公路,2016,36(3),278.
11 Amir Modarres, Morteza Rahmanzadeh, Zhao M L, et al. Journal of China & Foreign Highway,2017,37(6),251(in Chinese).
Amir Modarres, Morteza Rahmanzadeh,赵梦龙,等.中外公路,2017,37(6),251.
12 Zhou S X, Chen Y M, Zhang W S. Journal of Southeast University,2005,35,172.
13 Xu B H, Liu Q F, Ai B, et al. Journal of Thermal Analysis and Calori-metry,2018,131(2),1413.
14 Zhang H, Xu J Z, Hao P W, et al. Journal of Acta Materiae Compositae Sinica,2017,34(10),2344(in Chinese).
张航,徐金枝,郝培文,等.复合材料学报,2017,34(10),2344.
15 Hao J X. Highway,2015(5),194(in Chinese).
郝景贤.公路,2015(5),194.
16 Liu R R, Cheng X Y. Highway Engineering,2016,41(2),245(in Chinese).
刘冉冉,程形燕.公路工程,2016,41(2),245.
17 Yuan J X, Tian S M. Highway Engineering,2016,41(6),276(in Chinese).
袁景翔,田淞铭.公路工程,2016,41(6),276.
18 Wang H. Highway,2016(3),160(in Chinese).
王宏.公路,2016(3),160.
19 Wu J R, Qi D J. Bulletin of the Chinese Ceramic Society,2017,36(4),1412(in Chinese).
吴金荣,齐大军.硅酸盐通报,2017,36(4),1412.
20 Vadoad M, Johari M S, Rahai A R. Journal of Control South University,2015,22(5),1937.
21 Sheng Y P, Zhang B, Yan Y, et al. Construction and Building Materials,2017,141,289.
22 Wu J R, Hong R B, Gu C B. Advances in Materials Science and Enginee-ring, DOI: 10.1155/2018/5087395.
23 Qin X, Shen A Q, Guo Y C, et al. Construction and Building Materials,2018,159,508.
24 Tang T, Zhang X D, Xiao Q M, et al. International Journal of Civil Engineering,2018,16(3),299.
25 Kim M J, Kim S, Yoo D Y, et al. Construction and Building Materials,2018,178,233.
26 Shen C K. Green fracture mechanic, Tongji University Press, China,1996(in Chinese).
沈成康.断裂力学,同济大学出版社,1996.
27 Mirsayara M M. Engineering Fracture Mechanics,2017,186,181.
28 Liu Y, Zhang X N, Chi F X. Journal of China & Foreign Highway,2008,28(3),190(in Chinese).
刘宇,张肖宁,迟凤霞.中外公路,2008,28(3),190.
29 Li P, Wu Z, Ma K, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering),2015,39(2),238(in Chinese).
李萍,吴中,马科,等.武汉理工大学学报(交通科学与工程版),2015,39(2),238.
30 Lim I L, Johnston I W, Choi S K. Engineering Fracture Mechanics,1993,44(3),363.
31 Yang X K. Investigation on the performance of coal gangue powder/brucite fiber composite modified asphalt mixture. Ph.D. Thesis, Chang' an University, China,2016(in Chinese).
杨晓凯.煤矸石粉/水镁石纤维复合改性沥青混合料路用性能研究.博士学位论文,长安大学,2016.
[1] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[2] 成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
[3] 薛丽媛, 黄锋林. 纺织品微纤维的研究现状与防治措施[J]. 材料导报, 2020, 34(Z2): 567-571.
[4] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[5] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[6] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[7] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[8] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[9] 郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
[10] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[11] 毕洁夫, 郑南翔, 董是, 吴晓鑫. 基于大样本的沥青与粗集料原料对混合料水稳定性的影响分析[J]. 材料导报, 2019, 33(24): 4098-4104.
[12] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[13] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[14] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[15] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed