Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13100-13108    https://doi.org/10.11896/cldb.19070255
  无机非金属及其复合材料 |
沥青再生过程中新-旧沥青界面混溶行为综述
郭鹏1, 谢凤章1, 孟建玮2, 孟献春2, 魏琳3, 徐建4, 冯云霞1
1 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
2 河南省济阳高速公路建设有限公司,济源 454100
3 河南交通职业技术学院,郑州 450015
4 广安交通投资建设开发集团有限责任公司,广安 638500
Review on the Interface Blending Behavior of Virgin Asphalt and Aged Asphalt During Asphalt Reclaiming
GUO Peng1,XIE Fengzhang1, MENG Jianwei2, MENG Xianchun2, WEI Lin3, XU Jian4, FENG Yunxia1
1 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University,Chongqing 400074, China
2 Henan Jiyang Expressway Construction Co., Ltd., Jiyuan 454100, China
3 Henan College of Transporation, Zhengzhou 450015, China
4 Guang’an Transportation Investment Construction and Development Group Co., Ltd., Guang’an 638500, China
下载:  全 文 ( PDF ) ( 4919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着公路里程的迅速增长,废旧沥青混合料(RAP)逐年增多,研究者开展了废旧沥青混合料回收技术的研究,发现随着RAP掺量的增大,再生沥青路面整体路用性能急剧下降。探讨其原因,废旧沥青混合料再生过程中,新-旧沥青局部融合。鉴于RAP不断增多,寻求RAP的有效处理途径成为当务之急,高掺量RAP对再生沥青路面路用性能的影响有待商榷。为解决一系列再生沥青路面的难题,需形成完整的新-旧沥青融合理论体系,探讨新沥青以及相容渗透剂在旧沥青中的扩散影响区域和扩散途径。
迄今为止,国内外学者以宏观到微观的纵深演进思维,从宏观、细观、微观以及分子尺度分析新-旧沥青的混合效率,由部分融合的定性评价到融合程度量化分析的研究拓展,建立理论模型与评价指标。基于Fick扩散理论和分子动力学理论,运用混合效率和扩散速率等评价指标,探讨新-旧沥青融合影响因素及扩散机制。研究表明,影响新-旧沥青融合的因素有拌和温度、拌和时间以及材料参数,其中温度是主要因素。为满足再生沥青混合料的路用性能,研究者探讨施工参数(RAP掺量、拌和温度、拌和时间)与路用性能的关联性,从而提高废旧沥青混合料的回收利用效率。
本文综合国内外的研究成果,介绍扩散理论与模型,归纳研究手段及对应的评价指标。试验研究方面,分析存在的问题及不足,详细介绍了分子示踪、分层抽提、凝胶渗透色谱(GPC)、傅里叶红外光谱(FTIR)以及原子力显微镜(AFM)等技术在新-旧沥青融合中的运用。鉴于目前研究现状,研究者仅在宏观层面上利用再生沥青、再生沥青混合料的流变性能以及预估性能,通过对比分析以确定混合效率存在的缺陷,故研究者常借助细微观研究手段来验证试验的可靠性,并指出了影响新-旧沥青融合程度的诸多因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鹏
谢凤章
孟建玮
孟献春
魏琳
徐建
冯云霞
关键词:  新-旧沥青  融合程度  废旧沥青混合料  混合效率    
Abstract: With the rapid increase of highway mileage and the increase of recycled asphalt mixture (RAP) year by year, the researchers have carried out research on the recycling technology of recycled asphalt mixture. It could be found from the research that the whole performance of recycled asphalt pavement has dropped dramatically because of the increase of the amount of recycled asphalt mixture. When it comes to the reason, virgin asphalt and aged asphalt can not be fully integrated during the regeneration of recycled asphalt mixture. On account of the increasing amount of recycled asphalt mixture, it is imperative to explore effective handling approach to recycled asphalt mixture. And it remains to be discussed about the influence of high-content RAP on the road performance of recycled asphalt pavement. It is necessary to establish a complete theoretical system about the mixture of virgin asphalt and aged asphalt in order to solve a series of regeneration problems, which could help to explore the diffusion zone and diffusion path of virgin asphalt as well as compatible penetrant in aged asphalt.
Up to now, the scholars at home and abroad, on accordance with the deep-scale evolutionary thinking from macroscopic to microscopic, have carried out an analysis of the mixing efficiency of virgin asphalt and aged asphalt from macroscopic, mesoscopic, microscopic and molecular scales, and have developed theoretical models and evaluation indicators through the expansion of the study from the qualitative evaluation of partial fusion to the quantitative analysis of fusion degree. The scholars have probed into the influencing factors and diffusion mechanism of the mixture of virgin asphalt and aged asphalt by making use of the evaluation indexes such as mixing efficiency and diffusion rate, on the strength of Fick diffusion theory and molecular dynamics theory. It could be shown from the research that the factors affecting the mixing of virgin asphalt and aged asphalt include mixing temperature, mixing time as well as material parameters, in which temperature is the main factor. The researchers explored the correlation between construction parameters (RAP content, mixing temperature, mixing time) and pavement performance, which could also improve the recycling efficiency of recycled asphalt mixture.
This paper not only introduces diffusion theory and model, but also summarizes research methods and corresponding evaluation indicators by means of synthesizing the research results at home and abroad. Speaking of the experimental research, it makes a detailed introduction to some technologies in the use of the mixture of virgin asphalt and aged asphalt such as molecular tracing, stratification extraction, gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) on the basis of the problems and deficiencies solved in the analysis and research. In consideration of the macro level of current research status, the researchers carry out a comparative analysis to determine the defects of mixing efficiency by separately making use of the rheological properties and predictive properties of recycled asphalt and recycled asphalt mixture. For this reason, researchers mostly adopt the combination of macroscopic and microscopic scale to verify the reliability of the test and also point out a lot of factors that influence the degree of the mixture of virgin asphalt and aged asphalt.
Key words:  virgin asphalt and aged asphalt    degree of blend    recycled asphalt mixture    blending efficiency
                    发布日期:  2020-06-24
ZTFLH:  U416  
基金资助: 国家自然科学基金(51708072);重庆市科学技术局科技项目(cstc2016jcyjA1499;cstc2019jcyj-msxmX0302);四川省科技厅项目(2019YJ0714);重庆交通大学研究生创新项目(2018S0115)
通讯作者:  hnguopeng@126.com   
作者简介:  郭鹏,博士,副教授,硕士研究生导师。主要从事道路、建筑材料方面的研究。主持国家自然科学基金1项,省部级项目和企业单位项目6项,参与重庆交通科技项目1项,交通土建工程材料国家地方联合工程实验室基金项目2项,发表学术论文12篇,获得国家授权专利2项。
引用本文:    
郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
GUO Peng,XIE Fengzhang, MENG Jianwei, MENG Xianchun, WEI Lin, XU Jian, FENG Yunxia. Review on the Interface Blending Behavior of Virgin Asphalt and Aged Asphalt During Asphalt Reclaiming. Materials Reports, 2020, 34(13): 13100-13108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070255  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13100
1 Antunes V, Freire A C, Neves J. Construction and Building Materials, 2019, 211, 453.
2 Zaumanis M, Mallick R B, Frank R. Resources Conservation & Recycling, 2014, 92, 230.
3 Dinis-Almeida M, Castro-Gomes J, Antunes M L. Procedia-Social and Behavioral Sciences, 2012, 53(2290),286.
4 Petho L, Denneman E. Austroads research report AP-R517-16, Sydney, Australia, 2016.
5 Silva H M R D, Oliveira J R M, Jesus C M G.Resources Conservation & Recycling, 2012, 60(3), 38.
6 Elkashef M, Williams R C. Construction and Building Materials, 2017, 151, 345.
7 Karlsson R, Isacsson U. Journal of Materials in Civil Engineering, 2003, 15(2), 157.
8 Liu Jienan, Ma Tao, Lu Chang, et al. Highway Transportation Technology (Applied Technology Edition), 2011(s1), 25(in Chinese).
刘颀楠, 马涛, 路畅, 等. 公路交通科技(应用技术版), 2011 (s1), 25.
9 Qi Wenyang,Li Lihan,Huang Yi. Journal of Building Materials,2014,17(6),1020(in Chinese).
祁文洋, 李立寒, 黄毅.建筑材料学报 2014,17(6),1020.
10 Kriz P, Grant D L, Veloza B A, et al. Road Materials and Pavement Design, 2014, 15,78.
11 Pei Yan,Xu Guanghong, Li Youguang,et al.Technology of Highway and Transport, 2013(1),38(in Chinese).
裴妍, 徐光红, 李有光. 公路交通技术, 2013(1),38.
12 Gao Fei. Diffusion mechanism and macro-micro characteristics of fresh-rap binders. Ph.D. Thesis. Harbin Institute of Technology, China,2018(in Chinese).
高飞. 新-旧沥青混合体系扩散机制及宏微观特性研究.博士学位论文,哈尔滨工业大学,2018.
13 Zhou Xinxing, Wu Shaopeng, Zhang Xiao.Materials Review A: Review Papers, 2018,32(2),483(in Chinese).
周新星, 吴少鹏, 张翛.材料导报:综述篇, 2018,32(2),483.
14 Lu Y, Wang L. International Journal of Pavement Engineering, 2010, 11(5),393.
15 Hui Yao, Qingli Dai, Zhangping You.Petroleum Science and Technology,2017,35(6),586.
16 Guo Meng.Study on the mechanism of asphalt-aggregate interface and multi-scale evaluation method. Ph.D. Thesis,Harbin Institute of Technology, China, 2016(in Chinese).
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文,哈尔滨工业大学, 2016.
17 Dong Zejiao, Liu Zhiyangg, Wang Peng, et al. Fuel, 2017,189,155.
18 Amit Bhasin, Rammohan Bommavaram, Michael L Greenfield, et al. Journal of Materialk in Civil Engineering, 2011,23(4),485.
19 Xu G, Wang H, Sun W. Construction and Building Materials, 2018, 158,1046.
20 Wang Peng, Dong Zejiao, Tan Yiqiu, et al. Journal of Highway China, 2016, 29 (3), 9(in Chinese).
王鹏, 董泽蛟, 谭忆秋,等. 中国公路学报, 2016, 29(3), 9.
21 Ding Y, Huang B, Xiang S, et al. Fuel, 2016, 174,267.
22 Chen Long, He Zhaoyi, Chen Hongbin, et al. China Journal of Highway and Transport, 2019,32(3),25(in Chinese).
陈龙,何兆益,陈宏斌,等.中国公路学报,2019,32(3),25.
23 Qin Yongchun, Huang Songchang, Xu Jian. Journal of Highway and Transportation Research and Development, 2015, 32(12),24(in Chinese).
秦永春, 黄颂昌, 徐剑. 公路交通科技, 2015, 32(12),24.
24 Wen Haifang,Zhang Kun. Transportation Research Record: Journal of the Transportation Research Board,2016, 2575,187.
25 Zhang K, Muhunthan B. Construction and Building Materials, 2017,149,679.
26 Bonaquist, Ramon. Hot Mix Asphalt Technology,2007, 12,11.
27 Shu X, Huang B. Journal of Materials in Civil Engineering, 2008, 20(8),530.
28 Ashtiani M Z, Mogawer W S, Austerman A J. Transportation Research Record: Journal of the Transportation Research Board,DOI:/0.1177/0361198118787634.
29 Mangiafico S, Sauzéat C, Di Benedetto H. Construction and Building Materials, 2019,197,454.
30 Mangiafico S, Di Benedetto H, Sauzeat C, et al. Road Materials and Pavement Design, 2013, 14,132.
31 Rinaldini E, Schuetz P, Partl MN, et al. Composites Part B: Enginee-ring, 2014, 67,579.
32 van der Kooij, Verburg J H A. In: Proceedings of the 1st Eurobitume & Eurasphalt Congress.Strasbourg, 1996.
33 Rad F Y. Estimating blending level of fresh and RAP binders in recycled hot mix asphalt. Master’s Thesis, University of Wisconsin Madison, Madison, WI,1996.
34 Carpenter S H, Wolosick J R. Transportation Research Record, 1980,777,15.
35 Mcdaniel R S, Anderson R M, et al.Recommended use of reclaimed asphalt pavement in the superpave mix design method, National Academy Press, Washington D C,2001.
36 Shirodkar P, Mehta Y, Nolan A, et al. Construction and Building Materials,2011,25(1),150.
37 Sreeram A, Leng Z, Zhang Y, et al. Construction and Building Mate-rials,2018,179,245.
38 Mohajeri M, Molenaar A A A, Ven M F C V D. Advances in Asphalt Materials, DOI:10.1016/B978-0-08-100269-8.00012-X.
39 Zhao S, Huang B, Shu X. Construction and Building Materials,2015,82,184.
40 Zhao S, Huang B, Shu X, et al. Materials & Design,2016,89,1161.
41 Cheng Zhiqiang, Chen Xianyong, Chen Huiqiang, et al.Chongqing Jiaotong University:Natural Science Edition, 2012,31(6),1149(in Chinese).
成志强, 陈先勇, 陈辉强, 等.重庆交通大学学报(自然科学版), 2012, 31(6),1149.
42 Navaro J, Bruneau D, Drouadaine I, et al. Construction & Building Materials,2012,37,135.
43 Vassaux S, Gaudefroy V, Boulangé L, et al. Journal of Cleaner Production, 2019, 215, 821.
44 Vassaux S, Gaudefroy V, Boulangé L, et al. Construction and Building Materials, 2019, 213,234.
45 Lee T C, Terrel R L, Mahoney J P. Test for efficiency of mixing of recycled asphalt paving mixtures,Transportation Research Record,USA,1983.
46 Nguyen V H. Effects of laboratory mixing methods and RAP materials on performance of hot recycled asphalt mixtures. Ph.D.Thesis,University of Nottingham, U K, 2009.
47 Davidson D D, Canessa W, Escobar S J. Recycling of substandard and deteriorated asphalt pavement-aguideline for design,AAPT,1997,pp.46.
48 Zhao Zhanli. Study on the micro state of blending of aged and virgin asphalt in recycled mixture based on tracer method. Ph.D. Thesis,South China University of Technology, China, 2016(in Chinese).
赵占立. 基于示踪法再生混合料中新旧沥青微观混合状态的研究. 博士学位论文,华南理工大学, 2016.
49 Ding Y, Huang B, Shu X. Journal of Materials in Civil Engineering, 2017, 29(12),04017243.
50 Doh Y S, Amirkhanian S N, Kim K W. Construction & Building Mate-rials, 2008, 22(6),1253.
51 Lee S J, Amirkhanian S N, Kim K W. Construction & Building Mate-rials, 2009, 23(9),3087.
52 Zhao Yalan, Chen Shuanfa. Journal of China & Foreign Highway, 2011, 31(1),13(in Chinese).
赵亚兰, 陈拴发.中外公路, 2011, 31(1),13.
53 Bowers B F, Huang B, Shu X, et al. Construction and Building Mate-rials,2014, 50,517.
54 Bowers B F, Moore J, Huang B, et al. Fuel, 2014, 135, 63.
55 Zhao S, Bowers B, Huang B, et al. Journal of Materials in Civil Engineering, 2013, 26(5), 941.
56 Zhao S, Huang B, Shu X, et al. Journal of Materials in Civil Enginee-ring,2016,28(2), 04015106.
57 Ding Y, Huang B, Shu X. Construction and Building Materials,2016, 126,172.
58 Rui Lijun. Highway Engineering, 2014 (5), 307(in Chinese).
芮丽珺. 公路工程, 2014(5),307.
59 Li Jing, Liu Yu, Zhang Xiaoning. Silicate Bulletin, 2014, 33 (6), 1275(in Chinese).
李晶, 刘宇, 张肖宁. 硅酸盐通报, 2014, 33(6),1275.
60 Liu Ben, Shen Junan, Shi Pengcheng. Highway Transportation Science and Technology, 2016, 33 (2),6(in Chinese).
刘奔, 沈菊男, 石鹏程. 公路交通科技, 2016, 33(2),6.
61 Zhou Zhigang, Yang Yinpei, Zhang Qingping, et al. Journal of Transportation Engineering, 2011 (6), 10(in Chinese).
周志刚, 杨银培, 张清平,等.交通运输工程学报, 2011(6),10.
62 Li Ping, Nian Tengfei, Wei Dingbang, et al.Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018,46(2),34(in Chinese).
李萍, 念腾飞, 魏定邦. 华中科技大学学报(自然科学版), 2018,46(2),34.
63 Yang Z, Zhuang G, Wei X, et al. Applied Sciences, 2018, 8(12), 2668.
64 Xu W, Yang Z. Journal of Testing and Evaluation, 2018, 47(1),324.
65 Nahar S N,Dillingh B,Erkens S,et al.Transportation Research Record: Journal of the Transportation Research Board,DOI:10.1016/j.cognition.2005.11.007.
66 Schmets A,Kringos N,Pauli T,et al. International Journal of Pavement Engineering,2010,11(6),555.
67 Pauli A T, Grimes R W, Beemer A G, et al. International Journal of Pavement Engineering,2011,12(4),291.
68 Shen Fan, Zhao Mingyu, Lu Ji, et al. Functional Materials, 2014, 45 (21),21064(in Chinese).
沈凡, 赵明宇, 卢吉,等.功能材料, 2014, 45(21),21064.
69 Xu J, Hao P, Zhang D, et al. Construction & Building Materials, 2018, 163,390.
70 Guan Bo, Zhang Depeng, Li Yu, et al. Journal of Xi'an University of Architectue & Technology, 2017(6),919(in Chinese).
关泊, 张德鹏, 李雨,等. 西安建筑科技大学学报(自然科学版), 2017(6),919.
71 Nazzal M D, Mogawer W, Kaya S, et al. Journal of Materials in Civil Engineering, 2014, 26(7),04014019.
72 Hung A M, Fini E H. RSC Advances, 2015, 5(117),96972.
73 Shi Pengcheng,Shen Junan, Wei Wei.Highway,2019,64(3),225(in Chinese).
石鹏程,沈菊男,魏伟.公路,2019,64(3),225.
74 Al-Qadi I L, Carpenter S H, Roberts G, et al. Determination of usable residual asphalt binder in RAP,Illinois Center for Transportation (ICT),America, 2009.
75 Castorena C, Pape S, Mooney C. Transportation Research Record: Journal of the Transportation Researrch Board,2016,2574(2574),57.
76 XU Wei,Wang Xun. Highway Engineering, 2014,39(2),68(in Chinese).
徐伟,王勋.公路工程, 2014,39(2),68.
77 Ren Yongkai.Research on influence of the blending status between virgin and aged binders on pavement performance of recycled asphalt mixture with high RAP content. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China,2018(in Chinese).
任永凯. 高RAP掺量下新旧沥青混溶状态对热再生沥青混合料路用性能的影响研究. 硕士学位论文,北京建筑大学, 2018.
78 Wang Xun.Research on micro-mechanism and property test of the cental plant hot recycling asphalt mixture at high RAP proportion. Master’s Thesis, South China University of Technology, China,2014.
王勋. 高比例RAP厂拌热再生沥青混合料微观机理与性能试验研究. 硕士学位论文,华南理工大学, 2014.
79 Guo P, Feng Y, Wei W, et al. Journal of Materials in Civil Engineering,2019,31(10),04019209.
80 Wei Jin.Study on Ageing and Hot mix plant recycling of old asphalt pavement. Master’s Thesis, Southeast University, China, 2015(in Chinese).
魏晋. 沥青路面老化及旧沥青路面厂拌热再生研究. 硕士学位论文,东南大学, 2015.
81 Yuan Rui. Study on the application of hot in-plant recycling with high percentage RAP. Master’s Thesis, Southeast University, China,2015(in Chinese).
袁芮. 沥青路面高掺量厂拌热再生技术研究. 硕士学位论文,东南大学, 2015.
82 Guo Peng. Research on adhesion of aggregate-asphalt and performance of warm-mixing recycled asphalt mixture pavement. Ph.D. Thesis, Chongqing Jiaotong University,China, 2014(in Chinese).
郭鹏. 温拌再生沥青混合料集料-沥青粘附特性及路用性能研究. 博士学位论文, 重庆交通大学,2014.
[1] 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述*[J]. 《材料导报》期刊社, 2017, 31(11): 109-114.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed