Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22083-22086    https://doi.org/10.11896/cldb.20080036
  无机非金属及其复合材料 |
公路沥青混凝土路面材料高温稳定性研究
吴玲玲, 任其亮, 罗莉
重庆交通大学交通运输学院,重庆 400074
High Temperature Stability Test for Asphalt Concrete of Pavement Materials in Highway
WU Lingling, REN Qiliang, LUO Li
College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 2323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温稳定性是沥青混凝土的路用性能之一,为了更好地在公路路面工程中应用Supave-13、SMA-13和AC-13C三种类型沥青混合料,减少高温稳定性不足造成的沥青混凝土路面变形破坏。分别对Supave-13、AC-13C和SMA-13三种沥青混合料进行了动稳定度试验、单轴蠕变试验、回弹模量和抗压强度试验,结果发现:在0.7 MPa荷载条件下Supave-13的动稳定度最大;在1.05 MPa荷载条件下Supave-13的动稳定度最小;Supave-13混合料的劲度模量明显大于其他两种;Supave-13、AC-13C的抗压回弹模量相当,均大于SMA-13;Supave-13的抗压强度明显较AC-13C、SMA-13的抗压强度大;AC-13C、SMA-13的抗压强度相当。综合比较分析认为,Supave-13的高温稳定性比其他两种沥青混合料强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴玲玲
任其亮
罗莉
关键词:  沥青混合料  高稳定性  车辙试验  蠕变试验  回弹模量    
Abstract: High temperature stability is one of thehighway performance of asphalt concrete. In order to better apply Supave-13, SMA-13 and AC-13C in high-grade highway pavement, and reduce the deformation of asphalt concrete pavement caused by insufficient high temperature stability, Supave-13, AC-13C and SMA-13 were subjected to dynamic stability test, uniaxial creep test, rebound modulus and compressive strength test. It was found that the dynamic stability of Supave-13 under the load of 0.7 MPa It was larger than SMA-13 and AC-13C; under the condition of 1.05 MPa load, the dynamic stability of Supave-13 was smaller than other ones; the stiffness modulus of Supave-13 mixture was significantly greater than that of the other two; rebound modulus of Supave-13 and AC-13C, were equivalent and greater than SMA-13; the compressive strength of Supave-13 was significantly greater than that of AC-13C and SMA-13; the compressive strength of both AC-13C and SMA-13 was equivalent. Comprehensive comparative analysis showed that the high temperature stability of Supave-13 was stronger than the other two asphalt mixtures.
Key words:  asphalt mixture    high stability    rutting test    creep test    rebound modulus
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  U416  
基金资助: 国家重点研发计划(2018YFB1601001)
通讯作者:  cqrql@126.com   
作者简介:  吴玲玲,2007年10月毕业于同济大学,获工学博士学位。重庆交通大学副教授,主要从事交通运输工程领域的研究。任其亮,2007年10月毕业于西南交通大学,获工学博士学位。重庆交通大学教授、博士研究生导师,主要从事交通运输工程领域的研究。
引用本文:    
吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
WU Lingling, REN Qiliang, LUO Li. High Temperature Stability Test for Asphalt Concrete of Pavement Materials in Highway. Materials Reports, 2020, 34(22): 22083-22086.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080036  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22083
1 Zhang D L. Asphalt pavement, People's Communications Press, China 1999(in Chinese).张登良.沥青路面,人民交通出版社,1999.2 Shen J M. Road performance of asphalt and asphalt mixture, People's Communications Press, China, 2001(in Chinese).沈金安.沥青及沥青混合料路用性能,人民交通出版社,2001.3 Yi B. Research on evaluation method of high temperature stability of asphalt mixture.Master Thesis, Suzhou University of Science and Technology, China 2019(in Chinese).易斌.沥青混合料高温稳定性评价方法研究.硕士学位论文,苏州科技大学,2019.4 Zhang G H, Guan C L, Chen B, et al. Highway, 2003(10),95(in Chinese).张国辉,关长禄,陈波,等. 公路,2003(10),95.5 Zhao H B, Research on anti-rutting performance of upper asphalt mixture.Master Thesis, Southeast University, 2005(in Chinese).赵海滨.上面层沥青混合料抗车辙性能的研究.硕士学论文,东南大学,2005.6 Yu S F.Technology of Highway and Transport, 1999, 19 (1), 42(in Chinese).余叔藩.公路交通技术,1999,19(1),42.7 Zhao K, Lu Y G, Wei R X. China Journal of Highway and Transport, 2004, 17(2), 11(in Chinese).赵可,卢永贵,魏如喜.中国公路学报,2004,17(2),11.8 Shen J A. Modified Asphalt and SMA Pavement, People's Communications Press, 1997(in Chinese).沈金安.改性沥青与SMA路面,人民交通出版社,1997.9 Guo Y F, Nian T F,Li P Z, et al. Highway, 2016(8),175(in Chinese).郭云枫,念腾飞,李萍,等.公路,2016(8),175.10 Guo N S, Li W, Zhao Y H, et al.Journal of Dalian Maritime University, 2017,43(2),115(in Chinese).郭乃胜,李薇,赵颖华,等.大连海事大学学报,2017,43(2),115.11 Ministry of Transport of the Chinese Republic. JTJ 052-2000.Standard test methods of bitumen and bituminous mixtures for highway engineering. People 's Communications Press, China,2000(in Chinese).中华人共和国交通运输部.JTJ 052-2000.公路工程沥青及沥青混合料试验规程. 人民交通出版社,2000.
[1] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[2] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[3] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[4] 郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
[5] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[6] 毕洁夫, 郑南翔, 董是, 吴晓鑫. 基于大样本的沥青与粗集料原料对混合料水稳定性的影响分析[J]. 材料导报, 2019, 33(24): 4098-4104.
[7] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[8] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[9] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[10] 常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
[11] 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述*[J]. 《材料导报》期刊社, 2017, 31(11): 109-114.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed