Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4042-4052    https://doi.org/10.11896/cldb.20030125
  无机非金属及其复合材料 |
钢纤维形状与掺量对UHPC施工及力学特性的影响
聂洁1,2, 李传习1, 钱国平2, 潘仁胜1, 裴必达1, 邓帅1
1 长沙理工大学桥梁与建筑绿色建造及维护湖南省重点实验室,长沙 410114
2 长沙理工大学交通运输工程学院,长沙 410114
Effect of Shape and Content of Steel Fiber on Workability and Mechanical Properties of Ultra-High Performance Concrete
NIE Jie1,2, LI Chuanxi1, QIAN Guoping2, PAN Rensheng1, PEI Bida1, DENG Shuai1
1 Key Laboratory of Green Construction and Maintenance of Bridges and Buildings in Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
2 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 4747KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 选用四种平直及两种端钩钢纤维,研究钢纤维体积掺量、长径比、形状、同形及异形纤维混掺对超高性能混凝土(UHPC)施工及力学性能的影响。通过相关实验得到了UHPC扩展度、抗压强度、抗折强度、能量吸收、断裂能及弯曲应力-挠度曲线;基于弯曲应力-挠度曲线及改进后的规范方法计算了UHPC的弯曲韧性指标;最后,开展了最佳纤维混掺比例的研究。结果表明:纤维掺量每增加0.5%,UHPC扩展度平均降幅为2.72%,抗压强度平均增幅为5.79%。抗折强度、弯曲韧性指数和能量吸收则先增后减(临界掺量为3.5%),断裂能呈上下波动(在3%时达最低值)。随着纤维长径比的增大,UHPC扩展度降低,抗压强度、抗折强度、弯曲韧性指数、能量吸收值和断裂能基本呈递增趋势。相同长径比时,端钩形纤维UHPC扩展度、弯曲韧性指数优于平直形纤维,抗压强度、抗折强度、能量吸收、断裂能低于平直形纤维。同形纤维混掺UHPC扩展度、抗压强度稍低于对应的单掺纤维,弯曲韧性、能量吸收、断裂能总体上优于单掺试件;异形纤维混掺UHPC扩展度、抗压强度稍低于单掺试件,抗折强度与单掺试件各有所长,弯曲韧性、能量吸收及断裂能绝大多数优于单掺纤维。UHPC抗折强度变异性高于其抗压强度。单掺和混掺纤维时,UHPC试件的抗压强度、抗折强度综合最优分别为173.53 MPa、44.9 MPa和160.9 MPa、55.72 MPa;纤维混掺最佳组合为18 mm平直形、16 mm端钩形,且两者混掺比例为1∶1时,UHPC的综合力学性能较优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂洁
李传习
钱国平
潘仁胜
裴必达
邓帅
关键词:  UHPC  力学性能  钢纤维掺量  纤维长径比  同形、异形纤维混掺  弯曲韧性指数    
Abstract: The effects of steel fiber volume content, length-diameter ratio, shape, homogeneous fiber blending and deformed fiber blending on the workability and mechanical properties of ultra-high performance concrete (UHPC) were investigated by using four kinds of straight steel fibers and two kinds of end hook steel fibers. The slump extension, compressive strength, flexural strength, energy absorption, fracture energy and flexural stress-deflection curves of UHPC were obtained. The flexural toughness index of UHPC were calculated according to the flexural stress-deflection curves and the improved standard method. Finally, the study of the optimal fiber blending ratio was carried out. The results show that for every 0.5% increase in fiber content, the average decrease of slump extension of UHPC is 2.72%, and the average increase of compressive strength is 5.79%. The flexural strength, flexural toughness index and energy absorption increase first and then decreases (the critical fiber content is 3.5% ), and the fracture energy fluctuates up and down(the fiber volume content is 3% at the lowest fracture energy). With the increase of fiber length-diameter ratio, the slump extension of UHPC decrease, while the compressive strength, flexural strength, flexural toughness index, energy absorption and fracture energy value increase gradually. At the same length-diameter ratio, the slump extension and flexural toughness index of UHPC with end hook fibers are better than those of straight fibers, while the compressive strength, flexural strength, energy absorption and fracture energy of end hook fibers are lower than those of straight fibers. The slump extension and compressive strength of UHPC with homogeneous fiber blending are slightly lower than those of the corresponding single-blended fibers, and the flexural toughness, energy absorption and fracture energy are generally better than those of the single-blended specimens. The slump extension and compressive strength of UHPC with deformed fiber blending are slightly lower than those of single-blended specimens, the flexural strength increases and decreases with that of single-blended specimens, and the flexural toughness, energy absorption and fracture energy are almost better. The flexural strength variability of UHPC is higher than its compressive strength. The optimum compressive and flexural strength of all UHPC specimens are 173.53 MPa, 44.9 MPa(single fibers) and 160.9 MPa, 55.72 MPa(mixed fibers). The optimum blending combination of fibers is 18 mm straight fiber and 16 mm end hook fiber, and the strength, flexural toughness and energy absorption of UHPC are all better when the fiber blending ratio is 1∶1.
Key words:  UHPC    mechanical properties    steel fiber volume content    fiber length-diameter ratio    blending of the same shape steel fiber and the special shape steel fiber    flexural toughness index
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  U444  
基金资助: 国家自然科学基金(51778069;52078059);973计划项目(2015CB057700);湖南省研究生科研创新项目(CX2016B386);长沙理工大学南方地区桥梁长期性能提升技术国家地方联合工程实验室开放基金项目(16BCX01)
通讯作者:  lichuanxi2@163.com   
作者简介:  聂洁,长沙理工大学土木工程学院桥梁与隧道专业博士研究生。主要研究方向为超高性能混凝土(UHPC)的制备与力学性能。
李传习,1963年9月生,湖南衡阳人,工学博士,教授,博士研究生导师,享受国务院政府特殊津贴,长沙理工大学土木与建筑学院院长。新世纪百千万人才工程国家级人选,交通青年科技英才,湖南省“121人才工程”第一层次人选,长沙理工大学桥梁与隧道工程博士点“桥梁工程新技术、新材料、新工艺”研究方向的学术带头人。主持了包括4项国家自然科学基金面上项目在内的20余项省部级、国家级课题研究,“973”主研人员。主持完成了近40座特大型桥梁的施工控制和研究工作。获得国家科技进步二等奖2项、省部级科技进步一等奖4项,出版专著3本,在国内外学术期刊上发表论文200余篇,获发明专利10余项、软件著作权3个、指导毕业的硕士与博士百余人。
引用本文:    
聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
NIE Jie, LI Chuanxi, QIAN Guoping, PAN Rensheng, PEI Bida, DENG Shuai. Effect of Shape and Content of Steel Fiber on Workability and Mechanical Properties of Ultra-High Performance Concrete. Materials Reports, 2021, 35(4): 4042-4052.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030125  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4042
1 Richard P. Cheyrezy M. Cement and Concrete Research, 1995, 25(7), 1501.
2 Shao X D, Wu J J, Liu R, et al. China Jouranl of Highway and Transport, 2017, 30(3), 218(in Chinese).
邵旭东, 吴佳佳, 刘榕, 等. 中国公路学报, 2017, 30(3), 218.
3 Niu X J, Peng G F, Shang Y J, et al.Journal of the Chinese Ceramic Society, 2018, 46(8), 1141(in Chinese).
牛旭婧, 朋改非, 尚亚杰, 等. 硅酸盐学报, 2018, 46(8), 1141.
4 Yang J, Peng G F.Acta Materiae Compositae Sinica, 2018, 35(3), 1599(in Chinese).
杨娟, 朋改非. 复合材料学报, 2018, 35(3), 1599.
5 Yang J, Peng G F, Shui G S.Acta Materiae Compositae Sinica, 2019, 36(8), 1949(in Chinese).
杨娟,朋改非, 税国双. 复合材料学报, 2019, 36(8), 1949.
6 Kang S T, Lee Y, Park Y D, et al. Composite Structure, 2009, 92(1), 61.
7 Kim D J, Park S H, Ryu G S, et al. Construction & Building Materials, 2011, 25(11), 4144.
8 Banthia N, Soleimani S M.ACI Materials Journal, 2005, 102(6), 382.
9 Yoo D Y, Shin H O, Yang J M, et al. Composites Part B, 2014, 58(3), 122.
10 Yoo D Y, Lee J H, Yoon Y S.Composite Structures, 2013, 106(12), 742.
11 Wu Z, Shi C J, He W, et al.Construction and Building Materials, 2016, 103, 8.
12 Yu R, Spiesz P, Brouwers H J H.Construction and Building Materials, 2015, 79, 273.
13 Rossi P. ACI Materials Journal, 1997, 94(6), 478.
14 Liang X W, Hu A X, Yu J,et al. Acta Materiae Compositae Sinica, 2018, 35(3), 722(in Chinese).
梁兴文, 胡翱翔, 于婧, 等. 复合材料学报, 2018, 35(3), 722.
15 Peng G F, Niu X J, Zhao Y L.Journal of Building Materials, 2016, 19(6), 1013(in Chinese).
朋改非, 牛旭婧, 赵怡琳. 建筑材料学报, 2016, 19(6), 1013.
16 Chen J W, Ding X C, Ma T.Technology of Highway and Transport, 2012, 2(1), 23(in Chinese).
陈敬卫, 丁学超, 马腾. 公路交通技术, 2012, 2(1), 23.
17 Deng Z C.Acta Materiae Compositae Sinica, 2016, 33(6), 1274(in Chinese).
邓宗才. 复合材料学报, 2016, 33(6), 1274.
18 Li C X, Nie J, Pan R S, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 14(in Chinese).
李传习, 聂洁, 潘仁胜,等. 硅酸盐通报, 2019, 38(1), 14.
19 Chinaassociation for engineering constructure standardization. CECS13:2009 standard test methods for fiber reinforced concrete, China Planning Press, China, 2010(in Chinese).
中国工程建设协会标准. CECS13:2009 纤维混凝土试验方法标准, 中国计划出版社, 2010.
20 Markovic I. High performance hybrid-fiber concrete-development and utilization. Ph. D. Thesis, Delft University of Technology, Netherlands, 2006.
21 Wille K, Naaman A E. In: Fra MCo S-7 International Conference, Jeju, Korea, 2010, pp.65.
22 Zhang Z, Shao X D, Zhu P, et al. China Civil Engineering Journal, 2016, 49(2), 77(in Chinese).
张哲, 邵旭东, 朱平等. 土木工程学报, 2016, 49(2), 77.
23 Zhang Z, Shao X D, Li W G,et al. China Jouranl of Highway and Transport, 2015, 28(8), 50(in Chinese).
张哲, 邵旭东, 李文光,等. 中国公路学报, 2015, 28(8), 50.
24 Yang S L, Diao B. Journal of Traffic and Transportation Engineering, 2011,11(2), 8(in Chinese).
杨松霖, 刁波. 交通运输过程学报, 2011,11(2), 8.
[1] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[2] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[3] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[4] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[5] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[6] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[7] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[8] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[9] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[10] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[11] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[12] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[13] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[14] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[15] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed