Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3141-3151    https://doi.org/10.11896/cldb.19080169
  金属与金属基复合材料 |
热处理工艺对钼金属板材组织和性能影响的研究进展
陈文静1,2, 胡平1,2, 邢海瑞1,2, 夏雨1,2, 李世磊1,2, 左烨盖1,2, 王快社1,2, 冯鹏发3, 常恬4, 李来平4
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安建筑科技大学功能材料加工国家地方联合工程研究中心, 西安 710055;
3 金堆城钼业股份有限公司,西安 710077;
4 西北有色金属研究院,西安 710016
Research Progress of the Effect of Heat Treatment Process on Microstructure and Properties of Molybdenum Sheet
CHEN Wenjing1,2, HU Ping1,2, XING Hairui1,2, XIA Yu1,2, LI Shilei1,2, ZUO Yegai1,2, WANG Kuaishe1,2, FENG Pengfa3, CHANG Tian4, LI Laiping4
1 School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 National and Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3 Jinduicheng Molybdenum Co., Ltd., Xi'an 710077, China;
4 Northwest Institute for Non-ferrous Mental Research, Xi'an 710016, China;
下载:  全 文 ( PDF ) ( 33774KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属钼是一种硬而坚韧的难熔金属,熔点高达2 620 ℃,具有良好的耐腐蚀、抗蠕变和抗热震性,被广泛应用于航空航天、核工业及电子产业。钼及钼合金常通过粉末冶金制备,避免传统工艺制备工序复杂的同时保证了钼及钼合金的成分及成品质量。其体心立方结构和塑脆转变温度高,严重影响了钼和钼合金的成型加工性能及由资源向钼成品转化的经济效益。成型加工中常使用锻造和轧制手段进行变形,但是会造成严重的加工硬化。热处理工艺能简单有效地改善钼金属在加工过程中的残余应力、加工硬化等不利影响,提升产品的质量与性能。
钼合金变形过程中,单向轧制时会产生{111}<uvw>织构,在较高的变形量下,织构发生偏转,转至{112}<110>交叉轧制时趋向{100}<uvw>织构。轧制变形量为40%~90%,1 200 ℃退火处理后钼合金板材均会完成再结晶,当温度升至1 250 ℃以上时晶粒变得粗大,无论是单向轧制织构还是再结晶期间织构转化时<110>织构均会存在。加热速率较快(>100 K/min)的情况下,钼合金的晶粒尺寸更细小。钼中掺入Ti、Zr、La等元素,会在亚晶界或晶界处形成碳化物或氧化物,改变微观组织,提升了再结晶温度,热处理后断裂方式从脆性断裂转变为韧性解理断裂,提升了钼合金的综合力学性能。
本文综述了纯钼和钼合金板材的变形量、热处理工艺参数对其组织和性能影响的研究,对简化、有效生产高质量的钼板材过程给予理论指导,同时削减热处理能耗,有助于发展绿色热处理技术,并对未来钼板材热处理研究方向提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文静
胡平
邢海瑞
夏雨
李世磊
左烨盖
王快社
冯鹏发
常恬
李来平
关键词:  钼合金  变形  热处理  微观组织  力学性能    
Abstract: Molybdenum is a hard and tough refractory metal with the melting point is up to 2 620 ℃. It has good corrosion resistance, creep resistance and thermal shock resistance and is widely used in the aerospace, nuclear industry and electronics industry. Molybdenum and molybdenum alloys are usually prepared by powder metallurgy, which can avoid the complicated process of traditional preparation and ensure the composition and quality of molybdenum and molybdenum alloys. Due to its body-centered cubic structure and high plastic-brittle transition temperature, molybdenum and molybdenum alloy molding and processing are severely restricted, and the economic benefit transformation from resources to molybdenum products is severely restricted. Forging and rolling are often used in the forming process, but serious work hardening can be caused. Heat treatment process can simply and effectively improve the residual stress, work hardening and other adverse effects of molybdenum metal in the process of processing, and improve the quality and performance of products.
During the deformation process of molybdenum alloy, {111}<uvw> texture will be generated in unidirectional rolling. At a high deformation amount, the texture will be deflected to {112}<110>. The {100}<uvw> texture tends to be in cross rolling. After annealing treatment at 1 200 ℃, all the molybdenum alloy plates with rolling deformation of 40%—90% will complete recrystallization. When the temperature is above 1 250 ℃, the grain size will be larger, and the texture <110> will exist in both unidirectional rolling texture and texture transformation during recrystallization. At a faster heating rate (>100 K/min), the grain size of the molybdenum alloy is finer. Molybdenum doped with Ti, Zr, La and other elements will form carbides or oxides at sub-grain boundaries or grain boundaries, change the microstructure, and raise the recrystallization temperature. After heat treatment, the fracture mode changed from brittle fracture to ductile cleavage fracture, which improved the comprehensive mechanical pro-perties.
In this paper, the effects of deformation and heat treatment process parameters on the microstructure and properties of pure molybdenum and molybdenum alloy sheets are studied. Through its research, it provides theoretical guidance for the process of simplifying and effectively producing high-quality molybdenum sheet, and reduces the heat treatment energy consumption, which is helpful to develop green heat treatment, and puts forward the prospect of future molybdenum sheet heat treatment research.
Key words:  molybdenum alloy    deformation    heat treatment    microstructure    mechanical property
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TG146  
基金资助: 国家重点研发计划 (2017YFB0305600; 2017YFB0306000); 陕西高校青年创新团队(2019—2022); 霍英东教育基金会(171101)
作者简介:  陈文静,2016年6月毕业于西安建筑科技大学,获工学学士学位。现为西安建筑科技大学材料工程专业硕士研究生,在胡平教授的指导下进行粉末冶金和纯钼热处理方面的研究。
胡平,1985年1月生,博士,西安建筑科技大学冶金工程学院材料加工系教授、博士研究生导师。先后入选陕西省青年科技新星、陕西省普通高校 “青年杰出人才”、陕西省高层次人才特殊支持计划青年拔尖人才、西安建筑科技大学首批“优秀青年学者”雁塔学者。研究方向为高性能粉末冶金钼合金及纳米功能材料,主持国家重点研发计划项目子课题、国家自然科学基金、中国博士后科学基金一等资助等各类科研项目15项,在Nano Research、J. Alloy Comp.、Mater. Sci. Eng. A、Materials Letters等国内外学术期刊发表论文50余篇;授权中国发明专利38项,授权实用新型专利2项;获陕西省科学技术一等奖1项,中国有色金属工业科学技术一等奖2项。
引用本文:    
陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
CHEN Wenjing, HU Ping, XING Hairui, XIA Yu, LI Shilei, ZUO Yegai, WANG Kuaishe, FENG Pengfa, CHANG Tian, LI Laiping. Research Progress of the Effect of Heat Treatment Process on Microstructure and Properties of Molybdenum Sheet. Materials Reports, 2021, 35(3): 3141-3151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080169  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3141
1 Perepezko J H.Science,2009,326,1068.2 Dong D, Huang H T, Xiong N, et al.China Molybdenum Industry,2018,42(4),6(in Chinese).董帝,黄洪涛,熊宁,等.中国钼业,2018,42(4),6.3 Ju Y P, Wang A Q.Powder Metallurgy Industry,2015,25(4),58(in Chinese).居炎鹏,王爱琴.粉末冶金工业,2015,25(4),58.4 Hu P, Song R, Wang K S, et al.Rare Metal Materials and Engineering,2017,46(5),1225.5 Deng J, Wang K S, Hu P, et al.Journal of Alloys and Compounds,2018,763,687.6 Hu P, Yang F, Deng J, et al.Journal of Alloys and Compounds,2017,711,64.7 Wei S Z, Han M R, Xu L J, et al.Preparation and properties of molybdenum alloy, Science Press, China,2012(in Chinese).魏世忠,韩明儒,徐流杰,等.钼合金的制备与性能,科学出版社,2012.8 Feng P F, Dang X M, Hu L, et al.China Molybdenum Industry,2015,39(1),46(in Chinese).冯鹏发,党晓明,胡林,等.中国钼业,2015,39(1),46.9 Zhang W.Study on rolling process and microstructure of pure molybdenum and molybdenum-niobium alloy. Master's Thesis, Northeastern University, China,2014(in Chinese).张威. 纯钼及钼镧合金轧制工艺及组织性能研究.硕士学位论文,东北大学,2014.10 Han C, Sun F T.Nonferrous Metals Design,2015(4),54(in Chinese).韩晨,孙付涛.有色金属设计,2015(4),54.11 Zinkle S J.Fusion Engineering and Design,2005,74(1-4),31.12 Chen M T, Shi J J, Chen G P.Powder Metallurgy Industry,2017,27(4),66(in Chinese).陈梦婷,石建军,陈国平.粉末冶金工业,2017,27(4),66.13 Tian Y, Lin Q, Sun D Z, et al.Rare Metals and Cemented Carbides,2016,44(4),38(in Chinese).田野,林泉,孙大智,等.稀有金属与硬质合金,2016,44(4),38.14 Yang S T, Li J W, Wei S Z, et al.Materials Research and Application,2010,4(1),60(in Chinese).杨松涛,李继文,魏世忠,等.材料研究与应用,2010,4(1),60.15 Li J W, Yang S T, Wei S Z, et al.Rare Metal,2014,38(3),348.16 李继文,杨松涛,魏世忠,等.稀有金属,2014,38(3),348.16 Titran R H, Stephens J R, Petrasek D W.JOM-Journal of the Minerals Metals & Materials Society,1988,S40(7),A63.17 Mantri S A, Choudhuri D, Alam T, et al.Scripta Materialia,2017,130,69.18 Tan W, Chen C, Wang M P, et al.Materials Reports,2007,21(8),80(in Chinese).谭望,陈畅,汪明朴,等.材料导报,2007,21(8),80.19 Xu K Z.Molybdenum materials science and engineering, Metallurgical Industry Press, China,2014(in Chinese).徐克玷. 钼的材料科学与工程,冶金工业出版社,2014.20 Liao B B, Wei X Y.Cemented Carbide,2018,35(2),134(in Chinese).廖彬彬,魏修宇.硬质合金,2018,35(2),134.21 Yang X W, Li G L, Wang F, et al.China Tungsten Industry,2014(6),50(in Chinese).杨晓维,李高林,王飞,等.中国钨业,2014(6),50.22 Liu G, Zhang G J, Jiang F, et al.Materials China,2016,35(3),205(in Chinese).刘刚,张国君,江峰,等.中国材料进展,2016,35(3),205.23 Baker I.Intermetallics,2000,8(9-11),1183.24 Jia D M, Huang L R.China Molybdenum Industry,2017,41(6),44(in Chinses).25 贾东明,黄丽荣.中国钼业,2017,41(6),44.25 Voronova L M, Chashchukhina T I, Gapontseva T M, et al.Russian Metallurgy (Metally),2016,2016(10),960.26 Han Q, An G.China Molybdenum Industry,2012,36(2),49(in Chinese).韩强,安耿.中国钼业,2012,36(2),49.27 Huang J B, Wei X Z, Li G Z, et al.Cemented Carbide,2013,30(5),270(in Chinese).黄江波,魏修字,李光宗,等.硬质合金,2013,30(5),270.28 Pink E.Rekristallisations diagramme von Molybdän und Wolfram, Planseeberichte für Pulvermetallurgie,1965,pp.100.29 Primig S, Leitner H, Clemens H, et al.International Journal of Refractory Metals & Hard Materials,2010,28(6),703.30 Yu M, Wang K, Zan X, et al.Fusion Engineering & Design,2017,125,531.31 Almanstötter J, Rühle M.International Journal of Refractory Metals and Hard Materials,1997,15,295.32 Lee J S, Minkwitz C, Herzig C.Physica Status Solidi (B),1997,202,931.33 Lassner E, Schubert W D.Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springers US, Boston, MA,1999.34 Wang K, Zan X, Yu M, et al.Fusion Engineering and Design,2017,125,521.35 Walde T.International Journal of Refractory Metals & Hard Materials,2008,26(5),396.36 Oertel C G, Huensche I, Skrotzki W, et al.Materials Science & Enginee-ring: A,2008,483-484,79.37 Primig S, Leitner H, Knabl W, et al.Materials Science & Engineering A,2012,535,316.38 Primig S, Clemens H, Knabl W, et al.International. Journal of Refractory Metals and Hard Materials,2015,48,179.39 Dubinko A, Terentyev D, Bakaeva A, et al.International Journal of Refractory Metals and Hard Materials,2017,66,105.40 Primig S, Knabl W, Lorich A, et al.Metallurgical & Materials Transactions A,2012,43(12),4806.41 Huensche I,Oertel C G, et al.Materials Science Forum,2004,502(467),495.42 Wei X Y.China Molybdenum Industry,2016,40(3),48(in Chinese).魏修宇. 中国钼业,2016,40(3),48.43 Zhang G J, Ma J, An G, et al.China Molybdenum Industry,2014,38(5),47(in Chinese).张国君,马杰,安耿,等.中国钼业,2014,38(5),47.44 Lobanov M L, Danilov S V, Pastukhov V I, et al.Materials & Design,2016,109,251.45 Mrotzek T, Hoffmann A, Martin U.International Journal of Refractory Metals & Hard Materials,2006,24(4),298.46 Freund E, Agronov D, Rosen A.Engineering Fracture Mechanics,1986,24(2),157.47 Zong L J, Zhou H T, Ding H B, et al.Heat Treatment Technology and Equipment,2016,37(4),34(in Chinese).宗立君,周海涛,丁洪波,等.热处理技术与装备,2016,37(4),34.48 Ren R.China Molybdenum Industry,2010,34(1),54(in Chinese).任茹. 中国钼业,2010,34(1),54.49 Wang L, Sun J, Liu G, et al.China Molybdenum Industry,2014,38(2),36(in Chinese).王林,孙军,刘刚,等.中国钼业,2014,38(2),36.50 Wang C Y, Dong D, Teng Y G, et al.Heat Treatment of Metals,2018(7),180(in Chinese).王承阳,董帝,滕宇阔,等.金属热处理,2018,43(7),180.
[1] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[2] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[3] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[4] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[5] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[6] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[7] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[8] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[9] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[10] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[11] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[12] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[13] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[14] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[15] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed